mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 01:22:59 +08:00
Improve interface
This commit is contained in:
45
fastdeploy/vision/ocr/ppocr/classifier.cc
Executable file → Normal file
45
fastdeploy/vision/ocr/ppocr/classifier.cc
Executable file → Normal file
@@ -26,11 +26,11 @@ Classifier::Classifier(const std::string& model_file,
|
||||
const RuntimeOption& custom_option,
|
||||
const ModelFormat& model_format) {
|
||||
if (model_format == ModelFormat::ONNX) {
|
||||
valid_cpu_backends = {Backend::ORT,
|
||||
Backend::OPENVINO};
|
||||
valid_cpu_backends = {Backend::ORT, Backend::OPENVINO};
|
||||
valid_gpu_backends = {Backend::ORT, Backend::TRT};
|
||||
} else {
|
||||
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::OPENVINO, Backend::LITE};
|
||||
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::OPENVINO,
|
||||
Backend::LITE};
|
||||
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
||||
valid_kunlunxin_backends = {Backend::LITE};
|
||||
valid_ascend_backends = {Backend::LITE};
|
||||
@@ -54,16 +54,18 @@ bool Classifier::Initialize() {
|
||||
}
|
||||
|
||||
std::unique_ptr<Classifier> Classifier::Clone() const {
|
||||
std::unique_ptr<Classifier> clone_model = utils::make_unique<Classifier>(Classifier(*this));
|
||||
std::unique_ptr<Classifier> clone_model =
|
||||
utils::make_unique<Classifier>(Classifier(*this));
|
||||
clone_model->SetRuntime(clone_model->CloneRuntime());
|
||||
return clone_model;
|
||||
}
|
||||
|
||||
bool Classifier::Predict(const cv::Mat& img, int32_t* cls_label, float* cls_score) {
|
||||
bool Classifier::Predict(const cv::Mat& img, int32_t* cls_label,
|
||||
float* cls_score) {
|
||||
std::vector<int32_t> cls_labels(1);
|
||||
std::vector<float> cls_scores(1);
|
||||
bool success = BatchPredict({img}, &cls_labels, &cls_scores);
|
||||
if(!success){
|
||||
if (!success) {
|
||||
return success;
|
||||
}
|
||||
*cls_label = cls_labels[0];
|
||||
@@ -71,17 +73,36 @@ bool Classifier::Predict(const cv::Mat& img, int32_t* cls_label, float* cls_scor
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Classifier::Predict(const cv::Mat& img, vision::OCRResult* ocr_result) {
|
||||
ocr_result->cls_labels.resize(1);
|
||||
ocr_result->cls_scores.resize(1);
|
||||
if (!Predict(img, &(ocr_result->cls_labels[0]),
|
||||
&(ocr_result->cls_scores[0]))) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Classifier::BatchPredict(const std::vector<cv::Mat>& images,
|
||||
std::vector<int32_t>* cls_labels, std::vector<float>* cls_scores) {
|
||||
vision::OCRResult* ocr_result) {
|
||||
return BatchPredict(images, &(ocr_result->cls_labels),
|
||||
&(ocr_result->cls_scores));
|
||||
}
|
||||
|
||||
bool Classifier::BatchPredict(const std::vector<cv::Mat>& images,
|
||||
std::vector<int32_t>* cls_labels,
|
||||
std::vector<float>* cls_scores) {
|
||||
return BatchPredict(images, cls_labels, cls_scores, 0, images.size());
|
||||
}
|
||||
|
||||
bool Classifier::BatchPredict(const std::vector<cv::Mat>& images,
|
||||
std::vector<int32_t>* cls_labels, std::vector<float>* cls_scores,
|
||||
std::vector<int32_t>* cls_labels,
|
||||
std::vector<float>* cls_scores,
|
||||
size_t start_index, size_t end_index) {
|
||||
size_t total_size = images.size();
|
||||
std::vector<FDMat> fd_images = WrapMat(images);
|
||||
if (!preprocessor_.Run(&fd_images, &reused_input_tensors_, start_index, end_index)) {
|
||||
if (!preprocessor_.Run(&fd_images, &reused_input_tensors_, start_index,
|
||||
end_index)) {
|
||||
FDERROR << "Failed to preprocess the input image." << std::endl;
|
||||
return false;
|
||||
}
|
||||
@@ -91,8 +112,10 @@ bool Classifier::BatchPredict(const std::vector<cv::Mat>& images,
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!postprocessor_.Run(reused_output_tensors_, cls_labels, cls_scores, start_index, total_size)) {
|
||||
FDERROR << "Failed to postprocess the inference cls_results by runtime." << std::endl;
|
||||
if (!postprocessor_.Run(reused_output_tensors_, cls_labels, cls_scores,
|
||||
start_index, total_size)) {
|
||||
FDERROR << "Failed to postprocess the inference cls_results by runtime."
|
||||
<< std::endl;
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
|
@@ -62,6 +62,23 @@ class FASTDEPLOY_DECL Classifier : public FastDeployModel {
|
||||
virtual bool Predict(const cv::Mat& img,
|
||||
int32_t* cls_label, float* cls_score);
|
||||
|
||||
/** \brief Predict the input image and get OCR recognition model result.
|
||||
*
|
||||
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
|
||||
* \param[in] ocr_result The output of OCR recognition model result will be writen to this structure.
|
||||
* \return true if the prediction is successed, otherwise false.
|
||||
*/
|
||||
virtual bool Predict(const cv::Mat& img, vision::OCRResult* ocr_result);
|
||||
|
||||
/** \brief BatchPredict the input image and get OCR classification model result.
|
||||
*
|
||||
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
|
||||
* \param[in] ocr_result The output of OCR classification model result will be writen to this structure.
|
||||
* \return true if the prediction is successed, otherwise false.
|
||||
*/
|
||||
virtual bool BatchPredict(const std::vector<cv::Mat>& images,
|
||||
vision::OCRResult* ocr_result);
|
||||
|
||||
/** \brief BatchPredict the input image and get OCR classification model cls_result.
|
||||
*
|
||||
* \param[in] images The list of input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
|
||||
|
41
fastdeploy/vision/ocr/ppocr/dbdetector.cc
Executable file → Normal file
41
fastdeploy/vision/ocr/ppocr/dbdetector.cc
Executable file → Normal file
@@ -26,11 +26,11 @@ DBDetector::DBDetector(const std::string& model_file,
|
||||
const RuntimeOption& custom_option,
|
||||
const ModelFormat& model_format) {
|
||||
if (model_format == ModelFormat::ONNX) {
|
||||
valid_cpu_backends = {Backend::ORT,
|
||||
Backend::OPENVINO};
|
||||
valid_cpu_backends = {Backend::ORT, Backend::OPENVINO};
|
||||
valid_gpu_backends = {Backend::ORT, Backend::TRT};
|
||||
} else {
|
||||
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::OPENVINO, Backend::LITE};
|
||||
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::OPENVINO,
|
||||
Backend::LITE};
|
||||
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
||||
valid_kunlunxin_backends = {Backend::LITE};
|
||||
valid_ascend_backends = {Backend::LITE};
|
||||
@@ -54,7 +54,8 @@ bool DBDetector::Initialize() {
|
||||
}
|
||||
|
||||
std::unique_ptr<DBDetector> DBDetector::Clone() const {
|
||||
std::unique_ptr<DBDetector> clone_model = utils::make_unique<DBDetector>(DBDetector(*this));
|
||||
std::unique_ptr<DBDetector> clone_model =
|
||||
utils::make_unique<DBDetector>(DBDetector(*this));
|
||||
clone_model->SetRuntime(clone_model->CloneRuntime());
|
||||
return clone_model;
|
||||
}
|
||||
@@ -69,11 +70,33 @@ bool DBDetector::Predict(const cv::Mat& img,
|
||||
return true;
|
||||
}
|
||||
|
||||
bool DBDetector::Predict(const cv::Mat& img, vision::OCRResult* ocr_result) {
|
||||
if (!Predict(img, &(ocr_result->boxes))) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool DBDetector::BatchPredict(const std::vector<cv::Mat>& images,
|
||||
std::vector<std::vector<std::array<int, 8>>>* det_results) {
|
||||
std::vector<vision::OCRResult>* ocr_results) {
|
||||
std::vector<std::vector<std::array<int, 8>>> det_results;
|
||||
if (!BatchPredict(images, &det_results)) {
|
||||
return false;
|
||||
}
|
||||
ocr_results->resize(det_results.size());
|
||||
for (int i = 0; i < det_results.size(); i++) {
|
||||
(*ocr_results)[i].boxes = std::move(det_results[i]);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool DBDetector::BatchPredict(
|
||||
const std::vector<cv::Mat>& images,
|
||||
std::vector<std::vector<std::array<int, 8>>>* det_results) {
|
||||
std::vector<FDMat> fd_images = WrapMat(images);
|
||||
std::vector<std::array<int, 4>> batch_det_img_info;
|
||||
if (!preprocessor_.Run(&fd_images, &reused_input_tensors_, &batch_det_img_info)) {
|
||||
if (!preprocessor_.Run(&fd_images, &reused_input_tensors_,
|
||||
&batch_det_img_info)) {
|
||||
FDERROR << "Failed to preprocess input image." << std::endl;
|
||||
return false;
|
||||
}
|
||||
@@ -84,8 +107,10 @@ bool DBDetector::BatchPredict(const std::vector<cv::Mat>& images,
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!postprocessor_.Run(reused_output_tensors_, det_results, batch_det_img_info)) {
|
||||
FDERROR << "Failed to postprocess the inference cls_results by runtime." << std::endl;
|
||||
if (!postprocessor_.Run(reused_output_tensors_, det_results,
|
||||
batch_det_img_info)) {
|
||||
FDERROR << "Failed to postprocess the inference cls_results by runtime."
|
||||
<< std::endl;
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
|
@@ -62,6 +62,14 @@ class FASTDEPLOY_DECL DBDetector : public FastDeployModel {
|
||||
virtual bool Predict(const cv::Mat& img,
|
||||
std::vector<std::array<int, 8>>* boxes_result);
|
||||
|
||||
/** \brief Predict the input image and get OCR detection model result.
|
||||
*
|
||||
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
|
||||
* \param[in] ocr_result The output of OCR detection model result will be writen to this structure.
|
||||
* \return true if the prediction is successed, otherwise false.
|
||||
*/
|
||||
virtual bool Predict(const cv::Mat& img, vision::OCRResult* ocr_result);
|
||||
|
||||
/** \brief BatchPredict the input image and get OCR detection model result.
|
||||
*
|
||||
* \param[in] images The list input of image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
|
||||
@@ -71,6 +79,15 @@ class FASTDEPLOY_DECL DBDetector : public FastDeployModel {
|
||||
virtual bool BatchPredict(const std::vector<cv::Mat>& images,
|
||||
std::vector<std::vector<std::array<int, 8>>>* det_results);
|
||||
|
||||
/** \brief BatchPredict the input image and get OCR detection model result.
|
||||
*
|
||||
* \param[in] images The list input of image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
|
||||
* \param[in] ocr_results The output of OCR detection model result will be writen to this structure.
|
||||
* \return true if the prediction is successed, otherwise false.
|
||||
*/
|
||||
virtual bool BatchPredict(const std::vector<cv::Mat>& images,
|
||||
std::vector<vision::OCRResult>* ocr_results);
|
||||
|
||||
/// Get preprocessor reference of DBDetectorPreprocessor
|
||||
virtual DBDetectorPreprocessor& GetPreprocessor() {
|
||||
return preprocessor_;
|
||||
|
328
fastdeploy/vision/ocr/ppocr/ocrmodel_pybind.cc
Executable file → Normal file
328
fastdeploy/vision/ocr/ppocr/ocrmodel_pybind.cc
Executable file → Normal file
@@ -17,18 +17,26 @@
|
||||
namespace fastdeploy {
|
||||
void BindPPOCRModel(pybind11::module& m) {
|
||||
m.def("sort_boxes", [](std::vector<std::array<int, 8>>& boxes) {
|
||||
vision::ocr::SortBoxes(&boxes);
|
||||
return boxes;
|
||||
vision::ocr::SortBoxes(&boxes);
|
||||
return boxes;
|
||||
});
|
||||
|
||||
// DBDetector
|
||||
pybind11::class_<vision::ocr::DBDetectorPreprocessor>(m, "DBDetectorPreprocessor")
|
||||
pybind11::class_<vision::ocr::DBDetectorPreprocessor>(
|
||||
m, "DBDetectorPreprocessor")
|
||||
.def(pybind11::init<>())
|
||||
.def_property("max_side_len", &vision::ocr::DBDetectorPreprocessor::GetMaxSideLen, &vision::ocr::DBDetectorPreprocessor::SetMaxSideLen)
|
||||
.def_property("mean", &vision::ocr::DBDetectorPreprocessor::GetMean, &vision::ocr::DBDetectorPreprocessor::SetMean)
|
||||
.def_property("scale", &vision::ocr::DBDetectorPreprocessor::GetScale, &vision::ocr::DBDetectorPreprocessor::SetScale)
|
||||
.def_property("is_scale", &vision::ocr::DBDetectorPreprocessor::GetIsScale, &vision::ocr::DBDetectorPreprocessor::SetIsScale)
|
||||
.def("run", [](vision::ocr::DBDetectorPreprocessor& self, std::vector<pybind11::array>& im_list) {
|
||||
.def_property("max_side_len",
|
||||
&vision::ocr::DBDetectorPreprocessor::GetMaxSideLen,
|
||||
&vision::ocr::DBDetectorPreprocessor::SetMaxSideLen)
|
||||
.def_property("mean", &vision::ocr::DBDetectorPreprocessor::GetMean,
|
||||
&vision::ocr::DBDetectorPreprocessor::SetMean)
|
||||
.def_property("scale", &vision::ocr::DBDetectorPreprocessor::GetScale,
|
||||
&vision::ocr::DBDetectorPreprocessor::SetScale)
|
||||
.def_property("is_scale",
|
||||
&vision::ocr::DBDetectorPreprocessor::GetIsScale,
|
||||
&vision::ocr::DBDetectorPreprocessor::SetIsScale)
|
||||
.def("run", [](vision::ocr::DBDetectorPreprocessor& self,
|
||||
std::vector<pybind11::array>& im_list) {
|
||||
std::vector<vision::FDMat> images;
|
||||
for (size_t i = 0; i < im_list.size(); ++i) {
|
||||
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
|
||||
@@ -36,99 +44,134 @@ void BindPPOCRModel(pybind11::module& m) {
|
||||
std::vector<FDTensor> outputs;
|
||||
std::vector<std::array<int, 4>> batch_det_img_info;
|
||||
self.Run(&images, &outputs, &batch_det_img_info);
|
||||
for(size_t i = 0; i< outputs.size(); ++i){
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
outputs[i].StopSharing();
|
||||
}
|
||||
return std::make_pair(outputs, batch_det_img_info);
|
||||
});
|
||||
|
||||
pybind11::class_<vision::ocr::DBDetectorPostprocessor>(m, "DBDetectorPostprocessor")
|
||||
pybind11::class_<vision::ocr::DBDetectorPostprocessor>(
|
||||
m, "DBDetectorPostprocessor")
|
||||
.def(pybind11::init<>())
|
||||
.def_property("det_db_thresh", &vision::ocr::DBDetectorPostprocessor::GetDetDBThresh, &vision::ocr::DBDetectorPostprocessor::SetDetDBThresh)
|
||||
.def_property("det_db_box_thresh", &vision::ocr::DBDetectorPostprocessor::GetDetDBBoxThresh, &vision::ocr::DBDetectorPostprocessor::SetDetDBBoxThresh)
|
||||
.def_property("det_db_unclip_ratio", &vision::ocr::DBDetectorPostprocessor::GetDetDBUnclipRatio, &vision::ocr::DBDetectorPostprocessor::SetDetDBUnclipRatio)
|
||||
.def_property("det_db_score_mode", &vision::ocr::DBDetectorPostprocessor::GetDetDBScoreMode, &vision::ocr::DBDetectorPostprocessor::SetDetDBScoreMode)
|
||||
.def_property("use_dilation", &vision::ocr::DBDetectorPostprocessor::GetUseDilation, &vision::ocr::DBDetectorPostprocessor::SetUseDilation)
|
||||
.def_property("det_db_thresh",
|
||||
&vision::ocr::DBDetectorPostprocessor::GetDetDBThresh,
|
||||
&vision::ocr::DBDetectorPostprocessor::SetDetDBThresh)
|
||||
.def_property("det_db_box_thresh",
|
||||
&vision::ocr::DBDetectorPostprocessor::GetDetDBBoxThresh,
|
||||
&vision::ocr::DBDetectorPostprocessor::SetDetDBBoxThresh)
|
||||
.def_property("det_db_unclip_ratio",
|
||||
&vision::ocr::DBDetectorPostprocessor::GetDetDBUnclipRatio,
|
||||
&vision::ocr::DBDetectorPostprocessor::SetDetDBUnclipRatio)
|
||||
.def_property("det_db_score_mode",
|
||||
&vision::ocr::DBDetectorPostprocessor::GetDetDBScoreMode,
|
||||
&vision::ocr::DBDetectorPostprocessor::SetDetDBScoreMode)
|
||||
.def_property("use_dilation",
|
||||
&vision::ocr::DBDetectorPostprocessor::GetUseDilation,
|
||||
&vision::ocr::DBDetectorPostprocessor::SetUseDilation)
|
||||
|
||||
.def("run", [](vision::ocr::DBDetectorPostprocessor& self,
|
||||
std::vector<FDTensor>& inputs,
|
||||
const std::vector<std::array<int, 4>>& batch_det_img_info) {
|
||||
std::vector<std::vector<std::array<int, 8>>> results;
|
||||
.def("run",
|
||||
[](vision::ocr::DBDetectorPostprocessor& self,
|
||||
std::vector<FDTensor>& inputs,
|
||||
const std::vector<std::array<int, 4>>& batch_det_img_info) {
|
||||
std::vector<std::vector<std::array<int, 8>>> results;
|
||||
|
||||
if (!self.Run(inputs, &results, batch_det_img_info)) {
|
||||
throw std::runtime_error("Failed to preprocess the input data in DBDetectorPostprocessor.");
|
||||
}
|
||||
return results;
|
||||
})
|
||||
.def("run", [](vision::ocr::DBDetectorPostprocessor& self,
|
||||
std::vector<pybind11::array>& input_array,
|
||||
const std::vector<std::array<int, 4>>& batch_det_img_info) {
|
||||
std::vector<std::vector<std::array<int, 8>>> results;
|
||||
std::vector<FDTensor> inputs;
|
||||
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
|
||||
if (!self.Run(inputs, &results, batch_det_img_info)) {
|
||||
throw std::runtime_error("Failed to preprocess the input data in DBDetectorPostprocessor.");
|
||||
}
|
||||
return results;
|
||||
});
|
||||
if (!self.Run(inputs, &results, batch_det_img_info)) {
|
||||
throw std::runtime_error(
|
||||
"Failed to preprocess the input data in "
|
||||
"DBDetectorPostprocessor.");
|
||||
}
|
||||
return results;
|
||||
})
|
||||
.def("run",
|
||||
[](vision::ocr::DBDetectorPostprocessor& self,
|
||||
std::vector<pybind11::array>& input_array,
|
||||
const std::vector<std::array<int, 4>>& batch_det_img_info) {
|
||||
std::vector<std::vector<std::array<int, 8>>> results;
|
||||
std::vector<FDTensor> inputs;
|
||||
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
|
||||
if (!self.Run(inputs, &results, batch_det_img_info)) {
|
||||
throw std::runtime_error(
|
||||
"Failed to preprocess the input data in "
|
||||
"DBDetectorPostprocessor.");
|
||||
}
|
||||
return results;
|
||||
});
|
||||
|
||||
pybind11::class_<vision::ocr::DBDetector, FastDeployModel>(m, "DBDetector")
|
||||
.def(pybind11::init<std::string, std::string, RuntimeOption,
|
||||
ModelFormat>())
|
||||
.def(pybind11::init<>())
|
||||
.def_property_readonly("preprocessor", &vision::ocr::DBDetector::GetPreprocessor)
|
||||
.def_property_readonly("postprocessor", &vision::ocr::DBDetector::GetPostprocessor)
|
||||
.def("predict", [](vision::ocr::DBDetector& self,
|
||||
pybind11::array& data) {
|
||||
auto mat = PyArrayToCvMat(data);
|
||||
std::vector<std::array<int, 8>> boxes_result;
|
||||
self.Predict(mat, &boxes_result);
|
||||
return boxes_result;
|
||||
})
|
||||
.def("batch_predict", [](vision::ocr::DBDetector& self, std::vector<pybind11::array>& data) {
|
||||
.def_property_readonly("preprocessor",
|
||||
&vision::ocr::DBDetector::GetPreprocessor)
|
||||
.def_property_readonly("postprocessor",
|
||||
&vision::ocr::DBDetector::GetPostprocessor)
|
||||
.def("predict",
|
||||
[](vision::ocr::DBDetector& self, pybind11::array& data) {
|
||||
auto mat = PyArrayToCvMat(data);
|
||||
vision::OCRResult ocr_result;
|
||||
self.Predict(mat, &ocr_result);
|
||||
return ocr_result;
|
||||
})
|
||||
.def("batch_predict", [](vision::ocr::DBDetector& self,
|
||||
std::vector<pybind11::array>& data) {
|
||||
std::vector<cv::Mat> images;
|
||||
std::vector<std::vector<std::array<int, 8>>> det_results;
|
||||
for (size_t i = 0; i < data.size(); ++i) {
|
||||
images.push_back(PyArrayToCvMat(data[i]));
|
||||
}
|
||||
self.BatchPredict(images, &det_results);
|
||||
return det_results;
|
||||
std::vector<vision::OCRResult> ocr_results;
|
||||
self.BatchPredict(images, &ocr_results);
|
||||
return ocr_results;
|
||||
});
|
||||
|
||||
// Classifier
|
||||
pybind11::class_<vision::ocr::ClassifierPreprocessor>(m, "ClassifierPreprocessor")
|
||||
pybind11::class_<vision::ocr::ClassifierPreprocessor>(
|
||||
m, "ClassifierPreprocessor")
|
||||
.def(pybind11::init<>())
|
||||
.def_property("cls_image_shape", &vision::ocr::ClassifierPreprocessor::GetClsImageShape, &vision::ocr::ClassifierPreprocessor::SetClsImageShape)
|
||||
.def_property("mean", &vision::ocr::ClassifierPreprocessor::GetMean, &vision::ocr::ClassifierPreprocessor::SetMean)
|
||||
.def_property("scale", &vision::ocr::ClassifierPreprocessor::GetScale, &vision::ocr::ClassifierPreprocessor::SetScale)
|
||||
.def_property("is_scale", &vision::ocr::ClassifierPreprocessor::GetIsScale, &vision::ocr::ClassifierPreprocessor::SetIsScale)
|
||||
.def("run", [](vision::ocr::ClassifierPreprocessor& self, std::vector<pybind11::array>& im_list) {
|
||||
.def_property("cls_image_shape",
|
||||
&vision::ocr::ClassifierPreprocessor::GetClsImageShape,
|
||||
&vision::ocr::ClassifierPreprocessor::SetClsImageShape)
|
||||
.def_property("mean", &vision::ocr::ClassifierPreprocessor::GetMean,
|
||||
&vision::ocr::ClassifierPreprocessor::SetMean)
|
||||
.def_property("scale", &vision::ocr::ClassifierPreprocessor::GetScale,
|
||||
&vision::ocr::ClassifierPreprocessor::SetScale)
|
||||
.def_property("is_scale",
|
||||
&vision::ocr::ClassifierPreprocessor::GetIsScale,
|
||||
&vision::ocr::ClassifierPreprocessor::SetIsScale)
|
||||
.def("run", [](vision::ocr::ClassifierPreprocessor& self,
|
||||
std::vector<pybind11::array>& im_list) {
|
||||
std::vector<vision::FDMat> images;
|
||||
for (size_t i = 0; i < im_list.size(); ++i) {
|
||||
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
|
||||
}
|
||||
std::vector<FDTensor> outputs;
|
||||
if (!self.Run(&images, &outputs)) {
|
||||
throw std::runtime_error("Failed to preprocess the input data in ClassifierPreprocessor.");
|
||||
throw std::runtime_error(
|
||||
"Failed to preprocess the input data in ClassifierPreprocessor.");
|
||||
}
|
||||
for(size_t i = 0; i< outputs.size(); ++i){
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
outputs[i].StopSharing();
|
||||
}
|
||||
return outputs;
|
||||
});
|
||||
|
||||
pybind11::class_<vision::ocr::ClassifierPostprocessor>(m, "ClassifierPostprocessor")
|
||||
pybind11::class_<vision::ocr::ClassifierPostprocessor>(
|
||||
m, "ClassifierPostprocessor")
|
||||
.def(pybind11::init<>())
|
||||
.def_property("cls_thresh", &vision::ocr::ClassifierPostprocessor::GetClsThresh, &vision::ocr::ClassifierPostprocessor::SetClsThresh)
|
||||
.def("run", [](vision::ocr::ClassifierPostprocessor& self,
|
||||
std::vector<FDTensor>& inputs) {
|
||||
std::vector<int> cls_labels;
|
||||
std::vector<float> cls_scores;
|
||||
if (!self.Run(inputs, &cls_labels, &cls_scores)) {
|
||||
throw std::runtime_error("Failed to preprocess the input data in ClassifierPostprocessor.");
|
||||
}
|
||||
return std::make_pair(cls_labels,cls_scores);
|
||||
})
|
||||
.def_property("cls_thresh",
|
||||
&vision::ocr::ClassifierPostprocessor::GetClsThresh,
|
||||
&vision::ocr::ClassifierPostprocessor::SetClsThresh)
|
||||
.def("run",
|
||||
[](vision::ocr::ClassifierPostprocessor& self,
|
||||
std::vector<FDTensor>& inputs) {
|
||||
std::vector<int> cls_labels;
|
||||
std::vector<float> cls_scores;
|
||||
if (!self.Run(inputs, &cls_labels, &cls_scores)) {
|
||||
throw std::runtime_error(
|
||||
"Failed to preprocess the input data in "
|
||||
"ClassifierPostprocessor.");
|
||||
}
|
||||
return std::make_pair(cls_labels, cls_scores);
|
||||
})
|
||||
.def("run", [](vision::ocr::ClassifierPostprocessor& self,
|
||||
std::vector<pybind11::array>& input_array) {
|
||||
std::vector<FDTensor> inputs;
|
||||
@@ -136,70 +179,88 @@ void BindPPOCRModel(pybind11::module& m) {
|
||||
std::vector<int> cls_labels;
|
||||
std::vector<float> cls_scores;
|
||||
if (!self.Run(inputs, &cls_labels, &cls_scores)) {
|
||||
throw std::runtime_error("Failed to preprocess the input data in ClassifierPostprocessor.");
|
||||
throw std::runtime_error(
|
||||
"Failed to preprocess the input data in "
|
||||
"ClassifierPostprocessor.");
|
||||
}
|
||||
return std::make_pair(cls_labels,cls_scores);
|
||||
return std::make_pair(cls_labels, cls_scores);
|
||||
});
|
||||
|
||||
pybind11::class_<vision::ocr::Classifier, FastDeployModel>(m, "Classifier")
|
||||
.def(pybind11::init<std::string, std::string, RuntimeOption,
|
||||
ModelFormat>())
|
||||
.def(pybind11::init<>())
|
||||
.def_property_readonly("preprocessor", &vision::ocr::Classifier::GetPreprocessor)
|
||||
.def_property_readonly("postprocessor", &vision::ocr::Classifier::GetPostprocessor)
|
||||
.def("predict", [](vision::ocr::Classifier& self,
|
||||
pybind11::array& data) {
|
||||
auto mat = PyArrayToCvMat(data);
|
||||
int32_t cls_label;
|
||||
float cls_score;
|
||||
self.Predict(mat, &cls_label, &cls_score);
|
||||
return std::make_pair(cls_label, cls_score);
|
||||
})
|
||||
.def("batch_predict", [](vision::ocr::Classifier& self, std::vector<pybind11::array>& data) {
|
||||
.def_property_readonly("preprocessor",
|
||||
&vision::ocr::Classifier::GetPreprocessor)
|
||||
.def_property_readonly("postprocessor",
|
||||
&vision::ocr::Classifier::GetPostprocessor)
|
||||
.def("predict",
|
||||
[](vision::ocr::Classifier& self, pybind11::array& data) {
|
||||
auto mat = PyArrayToCvMat(data);
|
||||
vision::OCRResult ocr_result;
|
||||
self.Predict(mat, &ocr_result);
|
||||
return ocr_result;
|
||||
})
|
||||
.def("batch_predict", [](vision::ocr::Classifier& self,
|
||||
std::vector<pybind11::array>& data) {
|
||||
std::vector<cv::Mat> images;
|
||||
std::vector<int32_t> cls_labels;
|
||||
std::vector<float> cls_scores;
|
||||
for (size_t i = 0; i < data.size(); ++i) {
|
||||
images.push_back(PyArrayToCvMat(data[i]));
|
||||
}
|
||||
self.BatchPredict(images, &cls_labels, &cls_scores);
|
||||
return std::make_pair(cls_labels, cls_scores);
|
||||
vision::OCRResult ocr_result;
|
||||
self.BatchPredict(images, &ocr_result);
|
||||
return ocr_result;
|
||||
});
|
||||
|
||||
// Recognizer
|
||||
pybind11::class_<vision::ocr::RecognizerPreprocessor>(m, "RecognizerPreprocessor")
|
||||
.def(pybind11::init<>())
|
||||
.def_property("static_shape_infer", &vision::ocr::RecognizerPreprocessor::GetStaticShapeInfer, &vision::ocr::RecognizerPreprocessor::SetStaticShapeInfer)
|
||||
.def_property("rec_image_shape", &vision::ocr::RecognizerPreprocessor::GetRecImageShape, &vision::ocr::RecognizerPreprocessor::SetRecImageShape)
|
||||
.def_property("mean", &vision::ocr::RecognizerPreprocessor::GetMean, &vision::ocr::RecognizerPreprocessor::SetMean)
|
||||
.def_property("scale", &vision::ocr::RecognizerPreprocessor::GetScale, &vision::ocr::RecognizerPreprocessor::SetScale)
|
||||
.def_property("is_scale", &vision::ocr::RecognizerPreprocessor::GetIsScale, &vision::ocr::RecognizerPreprocessor::SetIsScale)
|
||||
.def("run", [](vision::ocr::RecognizerPreprocessor& self, std::vector<pybind11::array>& im_list) {
|
||||
std::vector<vision::FDMat> images;
|
||||
for (size_t i = 0; i < im_list.size(); ++i) {
|
||||
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
|
||||
}
|
||||
std::vector<FDTensor> outputs;
|
||||
if (!self.Run(&images, &outputs)) {
|
||||
throw std::runtime_error("Failed to preprocess the input data in RecognizerPreprocessor.");
|
||||
}
|
||||
for(size_t i = 0; i< outputs.size(); ++i){
|
||||
outputs[i].StopSharing();
|
||||
}
|
||||
return outputs;
|
||||
});
|
||||
|
||||
pybind11::class_<vision::ocr::RecognizerPostprocessor>(m, "RecognizerPostprocessor")
|
||||
.def(pybind11::init<std::string>())
|
||||
.def("run", [](vision::ocr::RecognizerPostprocessor& self,
|
||||
std::vector<FDTensor>& inputs) {
|
||||
std::vector<std::string> texts;
|
||||
std::vector<float> rec_scores;
|
||||
if (!self.Run(inputs, &texts, &rec_scores)) {
|
||||
throw std::runtime_error("Failed to preprocess the input data in RecognizerPostprocessor.");
|
||||
pybind11::class_<vision::ocr::RecognizerPreprocessor>(
|
||||
m, "RecognizerPreprocessor")
|
||||
.def(pybind11::init<>())
|
||||
.def_property("static_shape_infer",
|
||||
&vision::ocr::RecognizerPreprocessor::GetStaticShapeInfer,
|
||||
&vision::ocr::RecognizerPreprocessor::SetStaticShapeInfer)
|
||||
.def_property("rec_image_shape",
|
||||
&vision::ocr::RecognizerPreprocessor::GetRecImageShape,
|
||||
&vision::ocr::RecognizerPreprocessor::SetRecImageShape)
|
||||
.def_property("mean", &vision::ocr::RecognizerPreprocessor::GetMean,
|
||||
&vision::ocr::RecognizerPreprocessor::SetMean)
|
||||
.def_property("scale", &vision::ocr::RecognizerPreprocessor::GetScale,
|
||||
&vision::ocr::RecognizerPreprocessor::SetScale)
|
||||
.def_property("is_scale",
|
||||
&vision::ocr::RecognizerPreprocessor::GetIsScale,
|
||||
&vision::ocr::RecognizerPreprocessor::SetIsScale)
|
||||
.def("run", [](vision::ocr::RecognizerPreprocessor& self,
|
||||
std::vector<pybind11::array>& im_list) {
|
||||
std::vector<vision::FDMat> images;
|
||||
for (size_t i = 0; i < im_list.size(); ++i) {
|
||||
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
|
||||
}
|
||||
return std::make_pair(texts, rec_scores);
|
||||
})
|
||||
std::vector<FDTensor> outputs;
|
||||
if (!self.Run(&images, &outputs)) {
|
||||
throw std::runtime_error(
|
||||
"Failed to preprocess the input data in RecognizerPreprocessor.");
|
||||
}
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
outputs[i].StopSharing();
|
||||
}
|
||||
return outputs;
|
||||
});
|
||||
|
||||
pybind11::class_<vision::ocr::RecognizerPostprocessor>(
|
||||
m, "RecognizerPostprocessor")
|
||||
.def(pybind11::init<std::string>())
|
||||
.def("run",
|
||||
[](vision::ocr::RecognizerPostprocessor& self,
|
||||
std::vector<FDTensor>& inputs) {
|
||||
std::vector<std::string> texts;
|
||||
std::vector<float> rec_scores;
|
||||
if (!self.Run(inputs, &texts, &rec_scores)) {
|
||||
throw std::runtime_error(
|
||||
"Failed to preprocess the input data in "
|
||||
"RecognizerPostprocessor.");
|
||||
}
|
||||
return std::make_pair(texts, rec_scores);
|
||||
})
|
||||
.def("run", [](vision::ocr::RecognizerPostprocessor& self,
|
||||
std::vector<pybind11::array>& input_array) {
|
||||
std::vector<FDTensor> inputs;
|
||||
@@ -207,7 +268,9 @@ void BindPPOCRModel(pybind11::module& m) {
|
||||
std::vector<std::string> texts;
|
||||
std::vector<float> rec_scores;
|
||||
if (!self.Run(inputs, &texts, &rec_scores)) {
|
||||
throw std::runtime_error("Failed to preprocess the input data in RecognizerPostprocessor.");
|
||||
throw std::runtime_error(
|
||||
"Failed to preprocess the input data in "
|
||||
"RecognizerPostprocessor.");
|
||||
}
|
||||
return std::make_pair(texts, rec_scores);
|
||||
});
|
||||
@@ -216,25 +279,26 @@ void BindPPOCRModel(pybind11::module& m) {
|
||||
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
|
||||
ModelFormat>())
|
||||
.def(pybind11::init<>())
|
||||
.def_property_readonly("preprocessor", &vision::ocr::Recognizer::GetPreprocessor)
|
||||
.def_property_readonly("postprocessor", &vision::ocr::Recognizer::GetPostprocessor)
|
||||
.def("predict", [](vision::ocr::Recognizer& self,
|
||||
pybind11::array& data) {
|
||||
auto mat = PyArrayToCvMat(data);
|
||||
std::string text;
|
||||
float rec_score;
|
||||
self.Predict(mat, &text, &rec_score);
|
||||
return std::make_pair(text, rec_score);
|
||||
})
|
||||
.def("batch_predict", [](vision::ocr::Recognizer& self, std::vector<pybind11::array>& data) {
|
||||
.def_property_readonly("preprocessor",
|
||||
&vision::ocr::Recognizer::GetPreprocessor)
|
||||
.def_property_readonly("postprocessor",
|
||||
&vision::ocr::Recognizer::GetPostprocessor)
|
||||
.def("predict",
|
||||
[](vision::ocr::Recognizer& self, pybind11::array& data) {
|
||||
auto mat = PyArrayToCvMat(data);
|
||||
vision::OCRResult ocr_result;
|
||||
self.Predict(mat, &ocr_result);
|
||||
return ocr_result;
|
||||
})
|
||||
.def("batch_predict", [](vision::ocr::Recognizer& self,
|
||||
std::vector<pybind11::array>& data) {
|
||||
std::vector<cv::Mat> images;
|
||||
std::vector<std::string> texts;
|
||||
std::vector<float> rec_scores;
|
||||
for (size_t i = 0; i < data.size(); ++i) {
|
||||
images.push_back(PyArrayToCvMat(data[i]));
|
||||
}
|
||||
self.BatchPredict(images, &texts, &rec_scores);
|
||||
return std::make_pair(texts, rec_scores);
|
||||
vision::OCRResult ocr_result;
|
||||
self.BatchPredict(images, &ocr_result);
|
||||
return ocr_result;
|
||||
});
|
||||
}
|
||||
} // namespace fastdeploy
|
||||
|
47
fastdeploy/vision/ocr/ppocr/recognizer.cc
Executable file → Normal file
47
fastdeploy/vision/ocr/ppocr/recognizer.cc
Executable file → Normal file
@@ -26,13 +26,14 @@ Recognizer::Recognizer(const std::string& model_file,
|
||||
const std::string& params_file,
|
||||
const std::string& label_path,
|
||||
const RuntimeOption& custom_option,
|
||||
const ModelFormat& model_format):postprocessor_(label_path) {
|
||||
const ModelFormat& model_format)
|
||||
: postprocessor_(label_path) {
|
||||
if (model_format == ModelFormat::ONNX) {
|
||||
valid_cpu_backends = {Backend::ORT,
|
||||
Backend::OPENVINO};
|
||||
valid_cpu_backends = {Backend::ORT, Backend::OPENVINO};
|
||||
valid_gpu_backends = {Backend::ORT, Backend::TRT};
|
||||
} else {
|
||||
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::OPENVINO, Backend::LITE};
|
||||
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::OPENVINO,
|
||||
Backend::LITE};
|
||||
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
||||
valid_kunlunxin_backends = {Backend::LITE};
|
||||
valid_ascend_backends = {Backend::LITE};
|
||||
@@ -57,12 +58,14 @@ bool Recognizer::Initialize() {
|
||||
}
|
||||
|
||||
std::unique_ptr<Recognizer> Recognizer::Clone() const {
|
||||
std::unique_ptr<Recognizer> clone_model = utils::make_unique<Recognizer>(Recognizer(*this));
|
||||
std::unique_ptr<Recognizer> clone_model =
|
||||
utils::make_unique<Recognizer>(Recognizer(*this));
|
||||
clone_model->SetRuntime(clone_model->CloneRuntime());
|
||||
return clone_model;
|
||||
}
|
||||
|
||||
bool Recognizer::Predict(const cv::Mat& img, std::string* text, float* rec_score) {
|
||||
bool Recognizer::Predict(const cv::Mat& img, std::string* text,
|
||||
float* rec_score) {
|
||||
std::vector<std::string> texts(1);
|
||||
std::vector<float> rec_scores(1);
|
||||
bool success = BatchPredict({img}, &texts, &rec_scores);
|
||||
@@ -74,21 +77,39 @@ bool Recognizer::Predict(const cv::Mat& img, std::string* text, float* rec_score
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Recognizer::Predict(const cv::Mat& img, vision::OCRResult* ocr_result) {
|
||||
ocr_result->text.resize(1);
|
||||
ocr_result->rec_scores.resize(1);
|
||||
if (!Predict(img, &(ocr_result->text[0]), &(ocr_result->rec_scores[0]))) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Recognizer::BatchPredict(const std::vector<cv::Mat>& images,
|
||||
std::vector<std::string>* texts, std::vector<float>* rec_scores) {
|
||||
std::vector<std::string>* texts,
|
||||
std::vector<float>* rec_scores) {
|
||||
return BatchPredict(images, texts, rec_scores, 0, images.size(), {});
|
||||
}
|
||||
|
||||
bool Recognizer::BatchPredict(const std::vector<cv::Mat>& images,
|
||||
std::vector<std::string>* texts, std::vector<float>* rec_scores,
|
||||
size_t start_index, size_t end_index, const std::vector<int>& indices) {
|
||||
vision::OCRResult* ocr_result) {
|
||||
return BatchPredict(images, &(ocr_result->text), &(ocr_result->rec_scores));
|
||||
}
|
||||
|
||||
bool Recognizer::BatchPredict(const std::vector<cv::Mat>& images,
|
||||
std::vector<std::string>* texts,
|
||||
std::vector<float>* rec_scores,
|
||||
size_t start_index, size_t end_index,
|
||||
const std::vector<int>& indices) {
|
||||
size_t total_size = images.size();
|
||||
if (indices.size() != 0 && indices.size() != total_size) {
|
||||
FDERROR << "indices.size() should be 0 or images.size()." << std::endl;
|
||||
return false;
|
||||
}
|
||||
std::vector<FDMat> fd_images = WrapMat(images);
|
||||
if (!preprocessor_.Run(&fd_images, &reused_input_tensors_, start_index, end_index, indices)) {
|
||||
if (!preprocessor_.Run(&fd_images, &reused_input_tensors_, start_index,
|
||||
end_index, indices)) {
|
||||
FDERROR << "Failed to preprocess the input image." << std::endl;
|
||||
return false;
|
||||
}
|
||||
@@ -99,8 +120,10 @@ bool Recognizer::BatchPredict(const std::vector<cv::Mat>& images,
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!postprocessor_.Run(reused_output_tensors_, texts, rec_scores, start_index, total_size, indices)) {
|
||||
FDERROR << "Failed to postprocess the inference cls_results by runtime." << std::endl;
|
||||
if (!postprocessor_.Run(reused_output_tensors_, texts, rec_scores,
|
||||
start_index, total_size, indices)) {
|
||||
FDERROR << "Failed to postprocess the inference cls_results by runtime."
|
||||
<< std::endl;
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
|
@@ -63,6 +63,23 @@ class FASTDEPLOY_DECL Recognizer : public FastDeployModel {
|
||||
*/
|
||||
virtual bool Predict(const cv::Mat& img, std::string* text, float* rec_score);
|
||||
|
||||
/** \brief Predict the input image and get OCR recognition model result.
|
||||
*
|
||||
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
|
||||
* \param[in] ocr_result The output of OCR recognition model result will be writen to this structure.
|
||||
* \return true if the prediction is successed, otherwise false.
|
||||
*/
|
||||
virtual bool Predict(const cv::Mat& img, vision::OCRResult* ocr_result);
|
||||
|
||||
/** \brief BatchPredict the input image and get OCR recognition model result.
|
||||
*
|
||||
* \param[in] images The list of input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
|
||||
* \param[in] ocr_result The output of OCR recognition model result will be writen to this structure.
|
||||
* \return true if the prediction is successed, otherwise false.
|
||||
*/
|
||||
virtual bool BatchPredict(const std::vector<cv::Mat>& images,
|
||||
vision::OCRResult* ocr_result);
|
||||
|
||||
/** \brief BatchPredict the input image and get OCR recognition model result.
|
||||
*
|
||||
* \param[in] images The list of input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
|
||||
|
Reference in New Issue
Block a user