mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00
Improve interface
This commit is contained in:
332
fastdeploy/vision/ocr/ppocr/ocrmodel_pybind.cc
Executable file → Normal file
332
fastdeploy/vision/ocr/ppocr/ocrmodel_pybind.cc
Executable file → Normal file
@@ -17,18 +17,26 @@
|
||||
namespace fastdeploy {
|
||||
void BindPPOCRModel(pybind11::module& m) {
|
||||
m.def("sort_boxes", [](std::vector<std::array<int, 8>>& boxes) {
|
||||
vision::ocr::SortBoxes(&boxes);
|
||||
return boxes;
|
||||
vision::ocr::SortBoxes(&boxes);
|
||||
return boxes;
|
||||
});
|
||||
|
||||
|
||||
// DBDetector
|
||||
pybind11::class_<vision::ocr::DBDetectorPreprocessor>(m, "DBDetectorPreprocessor")
|
||||
pybind11::class_<vision::ocr::DBDetectorPreprocessor>(
|
||||
m, "DBDetectorPreprocessor")
|
||||
.def(pybind11::init<>())
|
||||
.def_property("max_side_len", &vision::ocr::DBDetectorPreprocessor::GetMaxSideLen, &vision::ocr::DBDetectorPreprocessor::SetMaxSideLen)
|
||||
.def_property("mean", &vision::ocr::DBDetectorPreprocessor::GetMean, &vision::ocr::DBDetectorPreprocessor::SetMean)
|
||||
.def_property("scale", &vision::ocr::DBDetectorPreprocessor::GetScale, &vision::ocr::DBDetectorPreprocessor::SetScale)
|
||||
.def_property("is_scale", &vision::ocr::DBDetectorPreprocessor::GetIsScale, &vision::ocr::DBDetectorPreprocessor::SetIsScale)
|
||||
.def("run", [](vision::ocr::DBDetectorPreprocessor& self, std::vector<pybind11::array>& im_list) {
|
||||
.def_property("max_side_len",
|
||||
&vision::ocr::DBDetectorPreprocessor::GetMaxSideLen,
|
||||
&vision::ocr::DBDetectorPreprocessor::SetMaxSideLen)
|
||||
.def_property("mean", &vision::ocr::DBDetectorPreprocessor::GetMean,
|
||||
&vision::ocr::DBDetectorPreprocessor::SetMean)
|
||||
.def_property("scale", &vision::ocr::DBDetectorPreprocessor::GetScale,
|
||||
&vision::ocr::DBDetectorPreprocessor::SetScale)
|
||||
.def_property("is_scale",
|
||||
&vision::ocr::DBDetectorPreprocessor::GetIsScale,
|
||||
&vision::ocr::DBDetectorPreprocessor::SetIsScale)
|
||||
.def("run", [](vision::ocr::DBDetectorPreprocessor& self,
|
||||
std::vector<pybind11::array>& im_list) {
|
||||
std::vector<vision::FDMat> images;
|
||||
for (size_t i = 0; i < im_list.size(); ++i) {
|
||||
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
|
||||
@@ -36,99 +44,134 @@ void BindPPOCRModel(pybind11::module& m) {
|
||||
std::vector<FDTensor> outputs;
|
||||
std::vector<std::array<int, 4>> batch_det_img_info;
|
||||
self.Run(&images, &outputs, &batch_det_img_info);
|
||||
for(size_t i = 0; i< outputs.size(); ++i){
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
outputs[i].StopSharing();
|
||||
}
|
||||
return std::make_pair(outputs, batch_det_img_info);
|
||||
});
|
||||
|
||||
pybind11::class_<vision::ocr::DBDetectorPostprocessor>(m, "DBDetectorPostprocessor")
|
||||
pybind11::class_<vision::ocr::DBDetectorPostprocessor>(
|
||||
m, "DBDetectorPostprocessor")
|
||||
.def(pybind11::init<>())
|
||||
.def_property("det_db_thresh", &vision::ocr::DBDetectorPostprocessor::GetDetDBThresh, &vision::ocr::DBDetectorPostprocessor::SetDetDBThresh)
|
||||
.def_property("det_db_box_thresh", &vision::ocr::DBDetectorPostprocessor::GetDetDBBoxThresh, &vision::ocr::DBDetectorPostprocessor::SetDetDBBoxThresh)
|
||||
.def_property("det_db_unclip_ratio", &vision::ocr::DBDetectorPostprocessor::GetDetDBUnclipRatio, &vision::ocr::DBDetectorPostprocessor::SetDetDBUnclipRatio)
|
||||
.def_property("det_db_score_mode", &vision::ocr::DBDetectorPostprocessor::GetDetDBScoreMode, &vision::ocr::DBDetectorPostprocessor::SetDetDBScoreMode)
|
||||
.def_property("use_dilation", &vision::ocr::DBDetectorPostprocessor::GetUseDilation, &vision::ocr::DBDetectorPostprocessor::SetUseDilation)
|
||||
.def_property("det_db_thresh",
|
||||
&vision::ocr::DBDetectorPostprocessor::GetDetDBThresh,
|
||||
&vision::ocr::DBDetectorPostprocessor::SetDetDBThresh)
|
||||
.def_property("det_db_box_thresh",
|
||||
&vision::ocr::DBDetectorPostprocessor::GetDetDBBoxThresh,
|
||||
&vision::ocr::DBDetectorPostprocessor::SetDetDBBoxThresh)
|
||||
.def_property("det_db_unclip_ratio",
|
||||
&vision::ocr::DBDetectorPostprocessor::GetDetDBUnclipRatio,
|
||||
&vision::ocr::DBDetectorPostprocessor::SetDetDBUnclipRatio)
|
||||
.def_property("det_db_score_mode",
|
||||
&vision::ocr::DBDetectorPostprocessor::GetDetDBScoreMode,
|
||||
&vision::ocr::DBDetectorPostprocessor::SetDetDBScoreMode)
|
||||
.def_property("use_dilation",
|
||||
&vision::ocr::DBDetectorPostprocessor::GetUseDilation,
|
||||
&vision::ocr::DBDetectorPostprocessor::SetUseDilation)
|
||||
|
||||
.def("run", [](vision::ocr::DBDetectorPostprocessor& self,
|
||||
std::vector<FDTensor>& inputs,
|
||||
const std::vector<std::array<int, 4>>& batch_det_img_info) {
|
||||
std::vector<std::vector<std::array<int, 8>>> results;
|
||||
.def("run",
|
||||
[](vision::ocr::DBDetectorPostprocessor& self,
|
||||
std::vector<FDTensor>& inputs,
|
||||
const std::vector<std::array<int, 4>>& batch_det_img_info) {
|
||||
std::vector<std::vector<std::array<int, 8>>> results;
|
||||
|
||||
if (!self.Run(inputs, &results, batch_det_img_info)) {
|
||||
throw std::runtime_error("Failed to preprocess the input data in DBDetectorPostprocessor.");
|
||||
}
|
||||
return results;
|
||||
})
|
||||
.def("run", [](vision::ocr::DBDetectorPostprocessor& self,
|
||||
std::vector<pybind11::array>& input_array,
|
||||
const std::vector<std::array<int, 4>>& batch_det_img_info) {
|
||||
std::vector<std::vector<std::array<int, 8>>> results;
|
||||
std::vector<FDTensor> inputs;
|
||||
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
|
||||
if (!self.Run(inputs, &results, batch_det_img_info)) {
|
||||
throw std::runtime_error("Failed to preprocess the input data in DBDetectorPostprocessor.");
|
||||
}
|
||||
return results;
|
||||
});
|
||||
if (!self.Run(inputs, &results, batch_det_img_info)) {
|
||||
throw std::runtime_error(
|
||||
"Failed to preprocess the input data in "
|
||||
"DBDetectorPostprocessor.");
|
||||
}
|
||||
return results;
|
||||
})
|
||||
.def("run",
|
||||
[](vision::ocr::DBDetectorPostprocessor& self,
|
||||
std::vector<pybind11::array>& input_array,
|
||||
const std::vector<std::array<int, 4>>& batch_det_img_info) {
|
||||
std::vector<std::vector<std::array<int, 8>>> results;
|
||||
std::vector<FDTensor> inputs;
|
||||
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
|
||||
if (!self.Run(inputs, &results, batch_det_img_info)) {
|
||||
throw std::runtime_error(
|
||||
"Failed to preprocess the input data in "
|
||||
"DBDetectorPostprocessor.");
|
||||
}
|
||||
return results;
|
||||
});
|
||||
|
||||
pybind11::class_<vision::ocr::DBDetector, FastDeployModel>(m, "DBDetector")
|
||||
.def(pybind11::init<std::string, std::string, RuntimeOption,
|
||||
ModelFormat>())
|
||||
.def(pybind11::init<>())
|
||||
.def_property_readonly("preprocessor", &vision::ocr::DBDetector::GetPreprocessor)
|
||||
.def_property_readonly("postprocessor", &vision::ocr::DBDetector::GetPostprocessor)
|
||||
.def("predict", [](vision::ocr::DBDetector& self,
|
||||
pybind11::array& data) {
|
||||
auto mat = PyArrayToCvMat(data);
|
||||
std::vector<std::array<int, 8>> boxes_result;
|
||||
self.Predict(mat, &boxes_result);
|
||||
return boxes_result;
|
||||
})
|
||||
.def("batch_predict", [](vision::ocr::DBDetector& self, std::vector<pybind11::array>& data) {
|
||||
.def_property_readonly("preprocessor",
|
||||
&vision::ocr::DBDetector::GetPreprocessor)
|
||||
.def_property_readonly("postprocessor",
|
||||
&vision::ocr::DBDetector::GetPostprocessor)
|
||||
.def("predict",
|
||||
[](vision::ocr::DBDetector& self, pybind11::array& data) {
|
||||
auto mat = PyArrayToCvMat(data);
|
||||
vision::OCRResult ocr_result;
|
||||
self.Predict(mat, &ocr_result);
|
||||
return ocr_result;
|
||||
})
|
||||
.def("batch_predict", [](vision::ocr::DBDetector& self,
|
||||
std::vector<pybind11::array>& data) {
|
||||
std::vector<cv::Mat> images;
|
||||
std::vector<std::vector<std::array<int, 8>>> det_results;
|
||||
for (size_t i = 0; i < data.size(); ++i) {
|
||||
images.push_back(PyArrayToCvMat(data[i]));
|
||||
}
|
||||
self.BatchPredict(images, &det_results);
|
||||
return det_results;
|
||||
std::vector<vision::OCRResult> ocr_results;
|
||||
self.BatchPredict(images, &ocr_results);
|
||||
return ocr_results;
|
||||
});
|
||||
|
||||
// Classifier
|
||||
pybind11::class_<vision::ocr::ClassifierPreprocessor>(m, "ClassifierPreprocessor")
|
||||
pybind11::class_<vision::ocr::ClassifierPreprocessor>(
|
||||
m, "ClassifierPreprocessor")
|
||||
.def(pybind11::init<>())
|
||||
.def_property("cls_image_shape", &vision::ocr::ClassifierPreprocessor::GetClsImageShape, &vision::ocr::ClassifierPreprocessor::SetClsImageShape)
|
||||
.def_property("mean", &vision::ocr::ClassifierPreprocessor::GetMean, &vision::ocr::ClassifierPreprocessor::SetMean)
|
||||
.def_property("scale", &vision::ocr::ClassifierPreprocessor::GetScale, &vision::ocr::ClassifierPreprocessor::SetScale)
|
||||
.def_property("is_scale", &vision::ocr::ClassifierPreprocessor::GetIsScale, &vision::ocr::ClassifierPreprocessor::SetIsScale)
|
||||
.def("run", [](vision::ocr::ClassifierPreprocessor& self, std::vector<pybind11::array>& im_list) {
|
||||
.def_property("cls_image_shape",
|
||||
&vision::ocr::ClassifierPreprocessor::GetClsImageShape,
|
||||
&vision::ocr::ClassifierPreprocessor::SetClsImageShape)
|
||||
.def_property("mean", &vision::ocr::ClassifierPreprocessor::GetMean,
|
||||
&vision::ocr::ClassifierPreprocessor::SetMean)
|
||||
.def_property("scale", &vision::ocr::ClassifierPreprocessor::GetScale,
|
||||
&vision::ocr::ClassifierPreprocessor::SetScale)
|
||||
.def_property("is_scale",
|
||||
&vision::ocr::ClassifierPreprocessor::GetIsScale,
|
||||
&vision::ocr::ClassifierPreprocessor::SetIsScale)
|
||||
.def("run", [](vision::ocr::ClassifierPreprocessor& self,
|
||||
std::vector<pybind11::array>& im_list) {
|
||||
std::vector<vision::FDMat> images;
|
||||
for (size_t i = 0; i < im_list.size(); ++i) {
|
||||
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
|
||||
}
|
||||
std::vector<FDTensor> outputs;
|
||||
if (!self.Run(&images, &outputs)) {
|
||||
throw std::runtime_error("Failed to preprocess the input data in ClassifierPreprocessor.");
|
||||
throw std::runtime_error(
|
||||
"Failed to preprocess the input data in ClassifierPreprocessor.");
|
||||
}
|
||||
for(size_t i = 0; i< outputs.size(); ++i){
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
outputs[i].StopSharing();
|
||||
}
|
||||
return outputs;
|
||||
});
|
||||
|
||||
pybind11::class_<vision::ocr::ClassifierPostprocessor>(m, "ClassifierPostprocessor")
|
||||
pybind11::class_<vision::ocr::ClassifierPostprocessor>(
|
||||
m, "ClassifierPostprocessor")
|
||||
.def(pybind11::init<>())
|
||||
.def_property("cls_thresh", &vision::ocr::ClassifierPostprocessor::GetClsThresh, &vision::ocr::ClassifierPostprocessor::SetClsThresh)
|
||||
.def("run", [](vision::ocr::ClassifierPostprocessor& self,
|
||||
std::vector<FDTensor>& inputs) {
|
||||
std::vector<int> cls_labels;
|
||||
std::vector<float> cls_scores;
|
||||
if (!self.Run(inputs, &cls_labels, &cls_scores)) {
|
||||
throw std::runtime_error("Failed to preprocess the input data in ClassifierPostprocessor.");
|
||||
}
|
||||
return std::make_pair(cls_labels,cls_scores);
|
||||
})
|
||||
.def_property("cls_thresh",
|
||||
&vision::ocr::ClassifierPostprocessor::GetClsThresh,
|
||||
&vision::ocr::ClassifierPostprocessor::SetClsThresh)
|
||||
.def("run",
|
||||
[](vision::ocr::ClassifierPostprocessor& self,
|
||||
std::vector<FDTensor>& inputs) {
|
||||
std::vector<int> cls_labels;
|
||||
std::vector<float> cls_scores;
|
||||
if (!self.Run(inputs, &cls_labels, &cls_scores)) {
|
||||
throw std::runtime_error(
|
||||
"Failed to preprocess the input data in "
|
||||
"ClassifierPostprocessor.");
|
||||
}
|
||||
return std::make_pair(cls_labels, cls_scores);
|
||||
})
|
||||
.def("run", [](vision::ocr::ClassifierPostprocessor& self,
|
||||
std::vector<pybind11::array>& input_array) {
|
||||
std::vector<FDTensor> inputs;
|
||||
@@ -136,70 +179,88 @@ void BindPPOCRModel(pybind11::module& m) {
|
||||
std::vector<int> cls_labels;
|
||||
std::vector<float> cls_scores;
|
||||
if (!self.Run(inputs, &cls_labels, &cls_scores)) {
|
||||
throw std::runtime_error("Failed to preprocess the input data in ClassifierPostprocessor.");
|
||||
throw std::runtime_error(
|
||||
"Failed to preprocess the input data in "
|
||||
"ClassifierPostprocessor.");
|
||||
}
|
||||
return std::make_pair(cls_labels,cls_scores);
|
||||
return std::make_pair(cls_labels, cls_scores);
|
||||
});
|
||||
|
||||
|
||||
pybind11::class_<vision::ocr::Classifier, FastDeployModel>(m, "Classifier")
|
||||
.def(pybind11::init<std::string, std::string, RuntimeOption,
|
||||
ModelFormat>())
|
||||
.def(pybind11::init<>())
|
||||
.def_property_readonly("preprocessor", &vision::ocr::Classifier::GetPreprocessor)
|
||||
.def_property_readonly("postprocessor", &vision::ocr::Classifier::GetPostprocessor)
|
||||
.def("predict", [](vision::ocr::Classifier& self,
|
||||
pybind11::array& data) {
|
||||
auto mat = PyArrayToCvMat(data);
|
||||
int32_t cls_label;
|
||||
float cls_score;
|
||||
self.Predict(mat, &cls_label, &cls_score);
|
||||
return std::make_pair(cls_label, cls_score);
|
||||
})
|
||||
.def("batch_predict", [](vision::ocr::Classifier& self, std::vector<pybind11::array>& data) {
|
||||
.def_property_readonly("preprocessor",
|
||||
&vision::ocr::Classifier::GetPreprocessor)
|
||||
.def_property_readonly("postprocessor",
|
||||
&vision::ocr::Classifier::GetPostprocessor)
|
||||
.def("predict",
|
||||
[](vision::ocr::Classifier& self, pybind11::array& data) {
|
||||
auto mat = PyArrayToCvMat(data);
|
||||
vision::OCRResult ocr_result;
|
||||
self.Predict(mat, &ocr_result);
|
||||
return ocr_result;
|
||||
})
|
||||
.def("batch_predict", [](vision::ocr::Classifier& self,
|
||||
std::vector<pybind11::array>& data) {
|
||||
std::vector<cv::Mat> images;
|
||||
std::vector<int32_t> cls_labels;
|
||||
std::vector<float> cls_scores;
|
||||
for (size_t i = 0; i < data.size(); ++i) {
|
||||
images.push_back(PyArrayToCvMat(data[i]));
|
||||
}
|
||||
self.BatchPredict(images, &cls_labels, &cls_scores);
|
||||
return std::make_pair(cls_labels, cls_scores);
|
||||
vision::OCRResult ocr_result;
|
||||
self.BatchPredict(images, &ocr_result);
|
||||
return ocr_result;
|
||||
});
|
||||
|
||||
// Recognizer
|
||||
pybind11::class_<vision::ocr::RecognizerPreprocessor>(m, "RecognizerPreprocessor")
|
||||
.def(pybind11::init<>())
|
||||
.def_property("static_shape_infer", &vision::ocr::RecognizerPreprocessor::GetStaticShapeInfer, &vision::ocr::RecognizerPreprocessor::SetStaticShapeInfer)
|
||||
.def_property("rec_image_shape", &vision::ocr::RecognizerPreprocessor::GetRecImageShape, &vision::ocr::RecognizerPreprocessor::SetRecImageShape)
|
||||
.def_property("mean", &vision::ocr::RecognizerPreprocessor::GetMean, &vision::ocr::RecognizerPreprocessor::SetMean)
|
||||
.def_property("scale", &vision::ocr::RecognizerPreprocessor::GetScale, &vision::ocr::RecognizerPreprocessor::SetScale)
|
||||
.def_property("is_scale", &vision::ocr::RecognizerPreprocessor::GetIsScale, &vision::ocr::RecognizerPreprocessor::SetIsScale)
|
||||
.def("run", [](vision::ocr::RecognizerPreprocessor& self, std::vector<pybind11::array>& im_list) {
|
||||
std::vector<vision::FDMat> images;
|
||||
for (size_t i = 0; i < im_list.size(); ++i) {
|
||||
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
|
||||
}
|
||||
std::vector<FDTensor> outputs;
|
||||
if (!self.Run(&images, &outputs)) {
|
||||
throw std::runtime_error("Failed to preprocess the input data in RecognizerPreprocessor.");
|
||||
}
|
||||
for(size_t i = 0; i< outputs.size(); ++i){
|
||||
outputs[i].StopSharing();
|
||||
}
|
||||
return outputs;
|
||||
});
|
||||
|
||||
pybind11::class_<vision::ocr::RecognizerPostprocessor>(m, "RecognizerPostprocessor")
|
||||
.def(pybind11::init<std::string>())
|
||||
.def("run", [](vision::ocr::RecognizerPostprocessor& self,
|
||||
std::vector<FDTensor>& inputs) {
|
||||
std::vector<std::string> texts;
|
||||
std::vector<float> rec_scores;
|
||||
if (!self.Run(inputs, &texts, &rec_scores)) {
|
||||
throw std::runtime_error("Failed to preprocess the input data in RecognizerPostprocessor.");
|
||||
pybind11::class_<vision::ocr::RecognizerPreprocessor>(
|
||||
m, "RecognizerPreprocessor")
|
||||
.def(pybind11::init<>())
|
||||
.def_property("static_shape_infer",
|
||||
&vision::ocr::RecognizerPreprocessor::GetStaticShapeInfer,
|
||||
&vision::ocr::RecognizerPreprocessor::SetStaticShapeInfer)
|
||||
.def_property("rec_image_shape",
|
||||
&vision::ocr::RecognizerPreprocessor::GetRecImageShape,
|
||||
&vision::ocr::RecognizerPreprocessor::SetRecImageShape)
|
||||
.def_property("mean", &vision::ocr::RecognizerPreprocessor::GetMean,
|
||||
&vision::ocr::RecognizerPreprocessor::SetMean)
|
||||
.def_property("scale", &vision::ocr::RecognizerPreprocessor::GetScale,
|
||||
&vision::ocr::RecognizerPreprocessor::SetScale)
|
||||
.def_property("is_scale",
|
||||
&vision::ocr::RecognizerPreprocessor::GetIsScale,
|
||||
&vision::ocr::RecognizerPreprocessor::SetIsScale)
|
||||
.def("run", [](vision::ocr::RecognizerPreprocessor& self,
|
||||
std::vector<pybind11::array>& im_list) {
|
||||
std::vector<vision::FDMat> images;
|
||||
for (size_t i = 0; i < im_list.size(); ++i) {
|
||||
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
|
||||
}
|
||||
return std::make_pair(texts, rec_scores);
|
||||
})
|
||||
std::vector<FDTensor> outputs;
|
||||
if (!self.Run(&images, &outputs)) {
|
||||
throw std::runtime_error(
|
||||
"Failed to preprocess the input data in RecognizerPreprocessor.");
|
||||
}
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
outputs[i].StopSharing();
|
||||
}
|
||||
return outputs;
|
||||
});
|
||||
|
||||
pybind11::class_<vision::ocr::RecognizerPostprocessor>(
|
||||
m, "RecognizerPostprocessor")
|
||||
.def(pybind11::init<std::string>())
|
||||
.def("run",
|
||||
[](vision::ocr::RecognizerPostprocessor& self,
|
||||
std::vector<FDTensor>& inputs) {
|
||||
std::vector<std::string> texts;
|
||||
std::vector<float> rec_scores;
|
||||
if (!self.Run(inputs, &texts, &rec_scores)) {
|
||||
throw std::runtime_error(
|
||||
"Failed to preprocess the input data in "
|
||||
"RecognizerPostprocessor.");
|
||||
}
|
||||
return std::make_pair(texts, rec_scores);
|
||||
})
|
||||
.def("run", [](vision::ocr::RecognizerPostprocessor& self,
|
||||
std::vector<pybind11::array>& input_array) {
|
||||
std::vector<FDTensor> inputs;
|
||||
@@ -207,7 +268,9 @@ void BindPPOCRModel(pybind11::module& m) {
|
||||
std::vector<std::string> texts;
|
||||
std::vector<float> rec_scores;
|
||||
if (!self.Run(inputs, &texts, &rec_scores)) {
|
||||
throw std::runtime_error("Failed to preprocess the input data in RecognizerPostprocessor.");
|
||||
throw std::runtime_error(
|
||||
"Failed to preprocess the input data in "
|
||||
"RecognizerPostprocessor.");
|
||||
}
|
||||
return std::make_pair(texts, rec_scores);
|
||||
});
|
||||
@@ -216,25 +279,26 @@ void BindPPOCRModel(pybind11::module& m) {
|
||||
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
|
||||
ModelFormat>())
|
||||
.def(pybind11::init<>())
|
||||
.def_property_readonly("preprocessor", &vision::ocr::Recognizer::GetPreprocessor)
|
||||
.def_property_readonly("postprocessor", &vision::ocr::Recognizer::GetPostprocessor)
|
||||
.def("predict", [](vision::ocr::Recognizer& self,
|
||||
pybind11::array& data) {
|
||||
auto mat = PyArrayToCvMat(data);
|
||||
std::string text;
|
||||
float rec_score;
|
||||
self.Predict(mat, &text, &rec_score);
|
||||
return std::make_pair(text, rec_score);
|
||||
})
|
||||
.def("batch_predict", [](vision::ocr::Recognizer& self, std::vector<pybind11::array>& data) {
|
||||
.def_property_readonly("preprocessor",
|
||||
&vision::ocr::Recognizer::GetPreprocessor)
|
||||
.def_property_readonly("postprocessor",
|
||||
&vision::ocr::Recognizer::GetPostprocessor)
|
||||
.def("predict",
|
||||
[](vision::ocr::Recognizer& self, pybind11::array& data) {
|
||||
auto mat = PyArrayToCvMat(data);
|
||||
vision::OCRResult ocr_result;
|
||||
self.Predict(mat, &ocr_result);
|
||||
return ocr_result;
|
||||
})
|
||||
.def("batch_predict", [](vision::ocr::Recognizer& self,
|
||||
std::vector<pybind11::array>& data) {
|
||||
std::vector<cv::Mat> images;
|
||||
std::vector<std::string> texts;
|
||||
std::vector<float> rec_scores;
|
||||
for (size_t i = 0; i < data.size(); ++i) {
|
||||
images.push_back(PyArrayToCvMat(data[i]));
|
||||
}
|
||||
self.BatchPredict(images, &texts, &rec_scores);
|
||||
return std::make_pair(texts, rec_scores);
|
||||
vision::OCRResult ocr_result;
|
||||
self.BatchPredict(images, &ocr_result);
|
||||
return ocr_result;
|
||||
});
|
||||
}
|
||||
} // namespace fastdeploy
|
||||
|
Reference in New Issue
Block a user