[Model] Support YOLOv7-face Model (#651)

* 测试

* delete test

* add yolov7-face

* fit vision.h

* add yolov7-face test

* fit: yolov7-face infer.cc

* fit

* fit Yolov7-face Cmakelist

* fit yolov7Face.cc

* add yolov7-face pybind

* add yolov7-face python infer

* feat yolov7-face pybind

* feat yolov7-face format error

* feat yolov7face_pybind error

* feat add yolov7face-pybind to facedet-pybind

* same as before

* same sa before

* feat __init__.py

* add yolov7face.py

* feat yolov7face.h ignore ","

* feat .py

* fit yolov7face.py

* add yolov7face test teadme file

* add test file

* fit postprocess

* delete remain annotation

* fit preview

* fit yolov7facepreprocessor

* fomat code

* fomat code

* fomat code

* fit format error and confthreshold and nmsthres

* fit confthreshold and nmsthres

* fit test-yolov7-face

* fit test_yolov7face

* fit review

* fit ci error

Co-authored-by: kongbohua <kongbh2022@stu.pku.edu.cn>
Co-authored-by: CoolCola <49013063+kongbohua@users.noreply.github.com>
This commit is contained in:
CoolCola
2022-12-14 19:14:43 +08:00
committed by GitHub
parent a5e8f60e14
commit ce4867d14e
17 changed files with 1304 additions and 0 deletions

View File

@@ -0,0 +1,14 @@
PROJECT(infer_demo C CXX)
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
# Specifies the path to the fastdeploy library after you have downloaded it
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
include(../../../../../FastDeploy.cmake)
# Add the FastDeploy dependency header
include_directories(${FASTDEPLOY_INCS})
add_executable(infer_demo ${PROJECT_SOURCE_DIR}/infer.cc)
# Add the FastDeploy library dependency
target_link_libraries(infer_demo ${FASTDEPLOY_LIBS})

View File

@@ -0,0 +1,90 @@
# YOLOv7Face C++部署示例
本目录下提供`infer.cc`快速完成YOLOv7Face在CPU/GPU以及GPU上通过TensorRT加速部署的示例。
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境下载预编译部署库和samples代码参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
以Linux上CPU推理为例在本目录执行如下命令即可完成编译测试
```bash
mkdir build
cd build
# 下载FastDeploy预编译库用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz # x.x.x > 1.0.2
tar xvf fastdeploy-linux-x64-x.x.x.tgz # x.x.x > 1.0.2
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x # x.x.x > 1.0.2
make -j
#下载官方转换好的YOLOv7Face模型文件和测试图片
wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov7-lite-e.onnx
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov7-tiny-face.onnx
#使用yolov7-tiny-face.onnx模型
# CPU推理
./infer_demo yolov7-tiny-face.onnx test_lite_face_detector_3.jpg 0
# GPU推理
./infer_demo yolov7-tiny-face.onnx test_lite_face_detector_3.jpg 1
# GPU上TensorRT推理
./infer_demo yolov7-tiny-face.onnx test_lite_face_detector_3.jpg 2
#使用yolov7-lite-e.onnx模型
# CPU推理
./infer_demo yolov7-lite-e.onnx test_lite_face_detector_3.jpg 0
# GPU推理
./infer_demo yolov7-lite-e.onnx test_lite_face_detector_3.jpg 1
# GPU上TensorRT推理
./infer_demo yolov7-lite-e.onnx test_lite_face_detector_3.jpg 2
```
运行完成可视化结果如下图所示
<img width="640" src="https://user-images.githubusercontent.com/49013063/206170111-843febb6-67d6-4c46-a121-d87d003bba21.jpg">
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
## YOLOv7Face C++接口
### YOLOv7Face类
```c++
fastdeploy::vision::facedet::YOLOv7Face(
const string& model_file,
const string& params_file = "",
const RuntimeOption& runtime_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX)
```
YOLOv7Face模型加载和初始化其中model_file为导出的ONNX模型格式。
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径当模型格式为ONNX时此参数传入空字符串即可
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为ONNX格式
#### Predict函数
> ```c++
> YOLOv7Face::Predict(cv::Mat* im, FaceDetectionResult* result,
> float conf_threshold = 0.3,
> float nms_iou_threshold = 0.5)
> ```
>
> 模型预测接口,输入图像直接输出检测结果。
>
> **参数**
>
> > * **im**: 输入图像注意需为HWCBGR格式
> > * **result**: 检测结果,包括检测框,各个框的置信度, FaceDetectionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
> > * **conf_threshold**: 检测框置信度过滤阈值
> > * **nms_iou_threshold**: NMS处理过程中iou阈值
- [模型介绍](../../)
- [Python部署](../python)
- [视觉模型预测结果](../../../../../docs/api/vision_results/)

View File

@@ -0,0 +1,105 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
void CpuInfer(const std::string& model_file, const std::string& image_file) {
auto model = fastdeploy::vision::facedet::YOLOv7Face(model_file);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::FaceDetectionResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisFaceDetection(im, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
void GpuInfer(const std::string& model_file, const std::string& image_file) {
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
auto model = fastdeploy::vision::facedet::YOLOv7Face(model_file, "", option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::FaceDetectionResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisFaceDetection(im, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
void TrtInfer(const std::string& model_file, const std::string& image_file) {
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
option.UseTrtBackend();
option.SetTrtInputShape("images", {1, 3, 640, 640});
auto model = fastdeploy::vision::facedet::YOLOv7Face(model_file, "", option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::FaceDetectionResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisFaceDetection(im, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 4) {
std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
"e.g ./infer_model yolov5s-face.onnx ./test.jpeg 0"
<< std::endl;
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
"with gpu; 2: run with gpu and use tensorrt backend."
<< std::endl;
return -1;
}
if (std::atoi(argv[3]) == 0) {
CpuInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 1) {
GpuInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 2) {
TrtInfer(argv[1], argv[2]);
}
return 0;
}

View File

@@ -0,0 +1,87 @@
# YOLOv7Face Python部署示例
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. FastDeploy Python whl包安装参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
本目录下提供`infer.py`快速完成YOLOv7Face在CPU/GPU以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
```bash
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vision/facedet/yolov7face/python/
#下载YOLOv7Face模型文件和测试图片
wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov7-lite-e.onnx
#使用yolov7-tiny-face.onnx模型
# CPU推理
python infer.py --model yolov7-tiny-face.onnx --image test_lite_face_detector_3.jpg --device cpu
# GPU推理
python infer.py --model yolov7-tiny-face.onnx --image test_lite_face_detector_3.jpg --device gpu
# GPU上使用TensorRT推理
python infer.py --model yolov7-tiny-face.onnx --image test_lite_face_detector_3.jpg --device gpu --use_trt True
#使用yolov7-lite-e.onnx模型
# CPU推理
python infer.py --model yolov7-lite-e.onnx --image test_lite_face_detector_3.jpg --device cpu
# GPU推理
python infer.py --model yolov7-lite-e.onnx --image test_lite_face_detector_3.jpg --device gpu
# GPU上使用TensorRT推理
python infer.py --model yolov7-lite-e.onnx --image test_lite_face_detector_3.jpg --device gpu --use_trt True
```
运行完成可视化结果如下图所示
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301839-a29aefae-16c9-4196-bf9d-9c6cf694f02d.jpg">
## YOLOv7Face Python接口
```python
fastdeploy.vision.facedet.YOLOv7Face(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
```
YOLOv7Face模型加载和初始化其中model_file为导出的ONNX模型格式
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径当模型格式为ONNX格式时此参数无需设定
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为ONNX
### predict函数
> ```python
> YOLOv7Face.predict(image_data, conf_threshold=0.3, nms_iou_threshold=0.5)
> ```
>
> 模型预测结口,输入图像直接输出检测结果。
>
> **参数**
>
> > * **image_data**(np.ndarray): 输入数据注意需为HWCBGR格式
> > * **conf_threshold**(float): 检测框置信度过滤阈值
> > * **nms_iou_threshold**(float): NMS处理过程中iou阈值
> **返回**
>
> > 返回`fastdeploy.vision.FaceDetectionResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
### 类成员属性
#### 预处理参数
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
> > * **size**(list[int]): 通过此参数修改预处理过程中resize的大小包含两个整型元素表示[width, height], 默认值为[640, 640]
> > * **padding_value**(list[float]): 通过此参数可以修改图片在resize时候做填充(padding)的值, 包含三个浮点型元素, 分别表示三个通道的值, 默认值为[114, 114, 114]
> > * **is_no_pad**(bool): 通过此参数让图片是否通过填充的方式进行resize, `is_no_pad=True` 表示不使用填充的方式,默认值为`is_no_pad=False`
> > * **is_mini_pad**(bool): 通过此参数可以将resize之后图像的宽高这是为最接近`size`成员变量的值, 并且满足填充的像素大小是可以被`stride`成员变量整除的。默认值为`is_mini_pad=False`
> > * **stride**(int): 配合`is_mini_pad`成员变量使用, 默认值为`stride=32`
## 其它文档
- [YOLOv7Face 模型介绍](..)
- [YOLOv7Face C++部署](../cpp)
- [模型预测结果说明](../../../../../docs/api/vision_results/)

View File

@@ -0,0 +1,51 @@
import fastdeploy as fd
import cv2
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model", required=True, help="Path of yolov7face onnx model.")
parser.add_argument(
"--image", required=True, help="Path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu' or 'gpu'.")
parser.add_argument(
"--use_trt",
type=ast.literal_eval,
default=False,
help="Wether to use tensorrt.")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu()
if args.use_trt:
option.use_trt_backend()
option.set_trt_input_shape("images", [1, 3, 640, 640])
return option
args = parse_arguments()
# Configure runtime and load the model
runtime_option = build_option(args)
model = fd.vision.facedet.YOLOv7Face(args.model, runtime_option=runtime_option)
# Predict image detection results
im = cv2.imread(args.image)
result = model.predict(im)
print(result)
# Visualization of prediction Results
vis_im = fd.vision.vis_face_detection(im, result)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")

View File

@@ -37,6 +37,7 @@
#include "fastdeploy/vision/facedet/contrib/scrfd.h" #include "fastdeploy/vision/facedet/contrib/scrfd.h"
#include "fastdeploy/vision/facedet/contrib/ultraface.h" #include "fastdeploy/vision/facedet/contrib/ultraface.h"
#include "fastdeploy/vision/facedet/contrib/yolov5face.h" #include "fastdeploy/vision/facedet/contrib/yolov5face.h"
#include "fastdeploy/vision/facedet/yolov7-face/yolov7face.h"
#include "fastdeploy/vision/faceid/contrib/adaface.h" #include "fastdeploy/vision/faceid/contrib/adaface.h"
#include "fastdeploy/vision/faceid/contrib/arcface.h" #include "fastdeploy/vision/faceid/contrib/arcface.h"
#include "fastdeploy/vision/faceid/contrib/cosface.h" #include "fastdeploy/vision/faceid/contrib/cosface.h"

View File

@@ -19,6 +19,7 @@ namespace fastdeploy {
void BindRetinaFace(pybind11::module& m); void BindRetinaFace(pybind11::module& m);
void BindUltraFace(pybind11::module& m); void BindUltraFace(pybind11::module& m);
void BindYOLOv5Face(pybind11::module& m); void BindYOLOv5Face(pybind11::module& m);
void BindYOLOv7Face(pybind11::module& m);
void BindSCRFD(pybind11::module& m); void BindSCRFD(pybind11::module& m);
void BindFaceDet(pybind11::module& m) { void BindFaceDet(pybind11::module& m) {
@@ -26,6 +27,7 @@ void BindFaceDet(pybind11::module& m) {
BindRetinaFace(facedet_module); BindRetinaFace(facedet_module);
BindUltraFace(facedet_module); BindUltraFace(facedet_module);
BindYOLOv5Face(facedet_module); BindYOLOv5Face(facedet_module);
BindYOLOv7Face(facedet_module);
BindSCRFD(facedet_module); BindSCRFD(facedet_module);
} }
} // namespace fastdeploy } // namespace fastdeploy

View File

@@ -0,0 +1,101 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/facedet/yolov7-face/postprocessor.h"
#include "fastdeploy/vision/utils/utils.h"
namespace fastdeploy {
namespace vision {
namespace facedet {
Yolov7FacePostprocessor::Yolov7FacePostprocessor() {
conf_threshold_ = 0.5;
nms_threshold_ = 0.45;
max_wh_ = 7680.0;
}
bool Yolov7FacePostprocessor::Run(const std::vector<FDTensor>& infer_result,
std::vector<FaceDetectionResult>* results,
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
int batch = infer_result[0].shape[0];
results->resize(batch);
for (size_t bs = 0; bs < batch; ++bs) {
(*results)[bs].Clear();
(*results)[bs].Reserve(infer_result[0].shape[1]);
if (infer_result[0].dtype != FDDataType::FP32) {
FDERROR << "Only support post process with float32 data." << std::endl;
return false;
}
const float* data = reinterpret_cast<const float*>(infer_result[0].Data()) + bs * infer_result[0].shape[1] * infer_result[0].shape[2];
for (size_t i = 0; i < infer_result[0].shape[1]; ++i) {
int s = i * infer_result[0].shape[2];
float confidence = data[s + 4];
const float* reg_cls_ptr = data + s;
const float* class_score = data + s + 5;
confidence *= (*class_score);
// filter boxes by conf_threshold
if (confidence <= conf_threshold_) {
continue;
}
float x = reg_cls_ptr[0];
float y = reg_cls_ptr[1];
float w = reg_cls_ptr[2];
float h = reg_cls_ptr[3];
// convert from [x, y, w, h] to [x1, y1, x2, y2]
(*results)[bs].boxes.emplace_back(std::array<float, 4>{
(x - w / 2.f), (y - h / 2.f), (x + w / 2.f), (y + h / 2.f)});
(*results)[bs].scores.push_back(confidence);
}
if ((*results)[bs].boxes.size() == 0) {
return true;
}
utils::NMS(&((*results)[bs]), nms_threshold_);
// scale the boxes to the origin image shape
auto iter_out = ims_info[bs].find("output_shape");
auto iter_ipt = ims_info[bs].find("input_shape");
FDASSERT(iter_out != ims_info[bs].end() && iter_ipt != ims_info[bs].end(),
"Cannot find input_shape or output_shape from im_info.");
float out_h = iter_out->second[0];
float out_w = iter_out->second[1];
float ipt_h = iter_ipt->second[0];
float ipt_w = iter_ipt->second[1];
float scale = std::min(out_h / ipt_h, out_w / ipt_w);
for (size_t i = 0; i < (*results)[bs].boxes.size(); ++i) {
float pad_h = (out_h - ipt_h * scale) / 2;
float pad_w = (out_w - ipt_w * scale) / 2;
// clip box
(*results)[bs].boxes[i][0] = std::max(((*results)[bs].boxes[i][0] - pad_w) / scale, 0.0f);
(*results)[bs].boxes[i][1] = std::max(((*results)[bs].boxes[i][1] - pad_h) / scale, 0.0f);
(*results)[bs].boxes[i][2] = std::max(((*results)[bs].boxes[i][2] - pad_w) / scale, 0.0f);
(*results)[bs].boxes[i][3] = std::max(((*results)[bs].boxes[i][3] - pad_h) / scale, 0.0f);
(*results)[bs].boxes[i][0] = std::min((*results)[bs].boxes[i][0], ipt_w - 1.0f);
(*results)[bs].boxes[i][1] = std::min((*results)[bs].boxes[i][1], ipt_h - 1.0f);
(*results)[bs].boxes[i][2] = std::min((*results)[bs].boxes[i][2], ipt_w - 1.0f);
(*results)[bs].boxes[i][3] = std::min((*results)[bs].boxes[i][3], ipt_h - 1.0f);
}
}
return true;
}
} // namespace detection
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,68 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
namespace fastdeploy {
namespace vision {
namespace facedet {
class FASTDEPLOY_DECL Yolov7FacePostprocessor{
public:
/*! @brief Postprocessor object for YOLOv7Face serials model.
*/
Yolov7FacePostprocessor();
/** \brief Process the result of runtime and fill to FaceDetectionResult structure
*
* \param[in] infer_result The inference result from runtime
* \param[in] results The output result of detection
* \param[in] ims_info The shape info list, record input_shape and output_shape
* \return true if the postprocess successed, otherwise false
*/
bool Run(const std::vector<FDTensor>& infer_result,
std::vector<FaceDetectionResult>* results,
const std::vector<std::map<std::string,
std::array<float, 2>>>& ims_info);
/// Set conf_threshold, default 0.5
void SetConfThreshold(const float& conf_threshold) {
conf_threshold_ = conf_threshold;
}
/// Get conf_threshold, default 0.5
float GetConfThreshold() const { return conf_threshold_; }
/// Set nms_threshold, default 0.45
void SetNMSThreshold(const float& nms_threshold) {
nms_threshold_ = nms_threshold;
}
/// Get nms_threshold, default 0.45
float GetNMSThreshold() const { return nms_threshold_; }
protected:
float conf_threshold_;
float nms_threshold_;
bool multi_label_;
float max_wh_;
};
} // namespace facedet
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,120 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/facedet/yolov7-face/preprocessor.h"
#include "fastdeploy/function/concat.h"
#include "fastdeploy/vision/common/processors/mat.h"
namespace fastdeploy {
namespace vision {
namespace facedet {
Yolov7FacePreprocessor::Yolov7FacePreprocessor() {
size_ = {640, 640};
padding_color_value_ = {114.0, 114.0, 114.0};
is_mini_pad_ = false;
is_no_pad_ = false;
is_scale_up_ = false;
stride_ = 32;
max_wh_ = 7680.0;
}
bool Yolov7FacePreprocessor::Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs,
std::vector<std::map<std::string, std::array<float, 2>>>* ims_info) {
if (images->size() == 0) {
FDERROR << "The size of input images should be greater than 0." << std::endl;
return false;
}
ims_info->resize(images->size());
outputs->resize(1);
std::vector<FDTensor> tensors(images->size());
for (size_t i = 0; i < images->size(); i++) {
if (!Preprocess(&(*images)[i], &tensors[i], &(*ims_info)[i])) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}
}
if (tensors.size() == 1) {
(*outputs)[0] = std::move(tensors[0]);
} else {
function::Concat(tensors, &((*outputs)[0]), 0);
}
return true;
}
bool Yolov7FacePreprocessor::Preprocess(FDMat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info){
// Record the shape of image and the shape of preprocessed image
(*im_info)["input_shape"] = {static_cast<float>(mat->Height()),
static_cast<float>(mat->Width())};
// yolov7-face's preprocess steps
// 1. letterbox
// 2. convert_and_permute(swap_rb=true)
LetterBox(mat);
std::vector<float> alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f};
std::vector<float> beta = {0.0f, 0.0f, 0.0f};
ConvertAndPermute::Run(mat, alpha, beta, true);
// Record output shape of preprocessed image
(*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
static_cast<float>(mat->Width())};
mat->ShareWithTensor(output);
output->ExpandDim(0); // reshape to n, h, w, c
return true;
}
void Yolov7FacePreprocessor::LetterBox(FDMat* mat) {
float scale =
std::min(size_[1] * 1.0 / mat->Height(), size_[0] * 1.0 / mat->Width());
if (!is_scale_up_) {
scale = std::min(scale, 1.0f);
}
int resize_h = int(round(mat->Height() * scale));
int resize_w = int(round(mat->Width() * scale));
int pad_w = size_[0] - resize_w;
int pad_h = size_[1] - resize_h;
if (is_mini_pad_) {
pad_h = pad_h % stride_;
pad_w = pad_w % stride_;
} else if (is_no_pad_) {
pad_h = 0;
pad_w = 0;
resize_h = size_[1];
resize_w = size_[0];
}
Resize::Run(mat, resize_w, resize_h);
if (pad_h > 0 || pad_w > 0) {
float half_h = pad_h * 1.0 / 2;
int top = int(round(half_h - 0.1));
int bottom = int(round(half_h + 0.1));
float half_w = pad_w * 1.0 / 2;
int left = int(round(half_w - 0.1));
int right = int(round(half_w + 0.1));
Pad::Run(mat, top, bottom, left, right, padding_color_value_);
}
}
} // namespace facedet
} // namespace vision
} // namespacefastdeploy

View File

@@ -0,0 +1,100 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
namespace fastdeploy {
namespace vision {
namespace facedet {
class FASTDEPLOY_DECL Yolov7FacePreprocessor{
public:
/** \brief Create a preprocessor instance for YOLOv7Face serials model
*/
Yolov7FacePreprocessor();
/** \brief Process the input image and prepare input tensors for runtime
*
* \param[in] images The input image data list, all the elements are returned by cv::imread()
* \param[in] outputs The output tensors which will feed in runtime
* \param[in] ims_info The shape info list, record input_shape and output_shape
* \ret
*/
bool Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs,
std::vector<std::map<std::string, std::array<float, 2>>>* ims_info);
/// Set target size, tuple of (width, height), default size = {640, 640}
void SetSize(const std::vector<int>& size) { size_ = size; }
/// Get target size, tuple of (width, height), default size = {640, 640}
std::vector<int> GetSize() const { return size_; }
/// Set padding value, size should be the same as channels
void SetPaddingColorValue(const std::vector<float>& padding_color_value) {
padding_color_value_ = padding_color_value;
}
/// Get padding value, size should be the same as channels
std::vector<float> GetPaddingColorValue() const {
return padding_color_value_;
}
/// Set is_scale_up, if is_scale_up is false, the input image only
/// can be zoom out, the maximum resize scale cannot exceed 1.0, default true
void SetScaleUp(bool is_scale_up) {
is_scale_up_ = is_scale_up;
}
/// Get is_scale_up, default true
bool GetScaleUp() const { return is_scale_up_; }
protected:
bool Preprocess(FDMat * mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info);
void LetterBox(FDMat* mat);
// target size, tuple of (width, height), default size = {640, 640}
std::vector<int> size_;
// padding value, size should be the same as channels
std::vector<float> padding_color_value_;
// only pad to the minimum rectange which height and width is times of stride
bool is_mini_pad_;
// while is_mini_pad = false and is_no_pad = true,
// will resize the image to the set size
bool is_no_pad_;
// if is_scale_up is false, the input image only can be zoom out,
// the maximum resize scale cannot exceed 1.0
bool is_scale_up_;
// padding stride, for is_mini_pad
int stride_;
// for offseting the boxes by classes when using NMS
float max_wh_;
};
} // namespace facedet
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,88 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/facedet/yolov7-face/yolov7face.h"
#include "fastdeploy/utils/perf.h"
#include "fastdeploy/vision/utils/utils.h"
namespace fastdeploy{
namespace vision{
namespace facedet{
YOLOv7Face::YOLOv7Face(const std::string& model_file,
const std::string& params_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format) {
if (model_format == ModelFormat::ONNX) {
valid_cpu_backends = {Backend::ORT};
valid_gpu_backends = {Backend::ORT, Backend::TRT};
} else {
valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
}
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
bool YOLOv7Face::Initialize(){
if (!InitRuntime()){
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
return true;
}
bool YOLOv7Face::Predict(const cv::Mat& im, FaceDetectionResult* result){
std::vector<FaceDetectionResult> results;
if (!BatchPredict({im}, &results)) {
return false;
}
*result = std::move(results[0]);
return true;
}
bool YOLOv7Face::BatchPredict(const std::vector<cv::Mat>& images,
std::vector<FaceDetectionResult>* results){
std::vector<FDMat> fd_images = WrapMat(images);
FDASSERT(images.size() == 1, "Only support batch = 1 now.");
std::vector<std::map<std::string, std::array<float, 2>>> ims_info;
if (!preprocessor_.Run(&fd_images, &reused_input_tensors_, &ims_info)) {
FDERROR << "Failed to preprocess the input image." << std::endl;
return false;
}
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
if (!Infer(reused_input_tensors_, &reused_output_tensors_)) {
FDERROR << "Failed to inference by runtime." << std::endl;
return false;
}
if (!postprocessor_.Run(reused_output_tensors_, results, ims_info)){
FDERROR << "Failed to postprocess the inference results by runtime." << std::endl;
return false;
}
return true;
}
} // namespace facedet
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,81 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
#include "fastdeploy/vision/facedet/yolov7-face/preprocessor.h"
#include "fastdeploy/vision/facedet/yolov7-face/postprocessor.h"
namespace fastdeploy {
namespace vision {
namespace facedet {
/*! @brief YOLOv7Face model object used when to load a YOLOv7Face model exported by YOLOv7Face.
*/
class FASTDEPLOY_DECL YOLOv7Face: public FastDeployModel{
public:
/** \brief Set path of model file and the configuration of runtime.
*
* \param[in] model_file Path of model file, e.g ./yolov7face.onnx
* \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
* \param[in] model_format Model format of the loaded model, default is ONNX format
*/
YOLOv7Face(const std::string& model_file, const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX);
std::string ModelName() {return "yolov7-face";}
/** \brief Predict the detection result for an input image
*
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result The output detection result will be writen to this structure
* \return true if the prediction successed, otherwise false
*/
virtual bool Predict(const cv::Mat& im, FaceDetectionResult* result);
/** \brief Predict the detection results for a batch of input images
*
* \param[in] imgs, The input image list, each element comes from cv::imread()
* \param[in] results The output detection result list
* \return true if the prediction successed, otherwise false
*/
virtual bool BatchPredict(const std::vector<cv::Mat>& images,
std::vector<FaceDetectionResult>* results);
/// Get preprocessor reference of YOLOv7Face
virtual Yolov7FacePreprocessor& GetPreprocessor() {
return preprocessor_;
}
/// Get postprocessor reference of YOLOv7Face
virtual Yolov7FacePostprocessor& GetPostprocessor() {
return postprocessor_;
}
protected:
bool Initialize();
Yolov7FacePreprocessor preprocessor_;
Yolov7FacePostprocessor postprocessor_;
};
} // namespace facedet
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,87 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindYOLOv7Face(pybind11::module& m) {
pybind11::class_<vision::facedet::Yolov7FacePreprocessor>(
m, "Yolov7FacePreprocessor")
.def(pybind11::init<>())
.def("run", [](vision::facedet::Yolov7FacePreprocessor& self, std::vector<pybind11::array>& im_list) {
std::vector<vision::FDMat> images;
for (size_t i = 0; i < im_list.size(); ++i) {
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
}
std::vector<FDTensor> outputs;
std::vector<std::map<std::string, std::array<float, 2>>> ims_info;
if (!self.Run(&images, &outputs, &ims_info)) {
throw std::runtime_error("Failed to preprocess the input data in PaddleClasPreprocessor.");
}
for (size_t i = 0; i < outputs.size(); ++i) {
outputs[i].StopSharing();
}
return make_pair(outputs, ims_info);
})
.def_property("size", &vision::facedet::Yolov7FacePreprocessor::GetSize, &vision::facedet::Yolov7FacePreprocessor::SetSize)
.def_property("padding_color_value", &vision::facedet::Yolov7FacePreprocessor::GetPaddingColorValue, &vision::facedet::Yolov7FacePreprocessor::SetPaddingColorValue)
.def_property("is_scale_up", &vision::facedet::Yolov7FacePreprocessor::GetScaleUp, &vision::facedet::Yolov7FacePreprocessor::SetScaleUp);
pybind11::class_<vision::facedet::Yolov7FacePostprocessor>(
m, "YOLOv7FacePostprocessor")
.def(pybind11::init<>())
.def("run", [](vision::facedet::Yolov7FacePostprocessor& self, std::vector<FDTensor>& inputs,
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
std::vector<vision::FaceDetectionResult> results;
if (!self.Run(inputs, &results, ims_info)) {
throw std::runtime_error("Failed to postprocess the runtime result in Yolov7Postprocessor.");
}
return results;
})
.def("run", [](vision::facedet::Yolov7FacePostprocessor& self, std::vector<pybind11::array>& input_array,
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
std::vector<vision::FaceDetectionResult> results;
std::vector<FDTensor> inputs;
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
if (!self.Run(inputs, &results, ims_info)) {
throw std::runtime_error("Failed to postprocess the runtime result in YOLOv7Postprocessor.");
}
return results;
})
.def_property("conf_threshold", &vision::facedet::Yolov7FacePostprocessor::GetConfThreshold, &vision::facedet::Yolov7FacePostprocessor::SetConfThreshold)
.def_property("nms_threshold", &vision::facedet::Yolov7FacePostprocessor::GetNMSThreshold, &vision::facedet::Yolov7FacePostprocessor::SetNMSThreshold);
pybind11::class_<vision::facedet::YOLOv7Face, FastDeployModel>(m, "YOLOv7Face")
.def(pybind11::init<std::string, std::string, RuntimeOption,
ModelFormat>())
.def("predict",
[](vision::facedet::YOLOv7Face& self, pybind11::array& data) {
auto mat = PyArrayToCvMat(data);
vision::FaceDetectionResult res;
self.Predict(mat, &res);
return res;
})
.def("batch_predict", [](vision::facedet::YOLOv7Face& self, std::vector<pybind11::array>& data) {
std::vector<cv::Mat> images;
for (size_t i = 0; i < data.size(); ++i) {
images.push_back(PyArrayToCvMat(data[i]));
}
std::vector<vision::FaceDetectionResult> results;
self.BatchPredict(images, &results);
return results;
})
.def_property_readonly("preprocessor", &vision::facedet::YOLOv7Face::GetPreprocessor)
.def_property_readonly("postprocessor", &vision::facedet::YOLOv7Face::GetPostprocessor);
}
} // namespace fastdeploy

View File

@@ -14,6 +14,7 @@
from __future__ import absolute_import from __future__ import absolute_import
from .contrib.yolov5face import YOLOv5Face from .contrib.yolov5face import YOLOv5Face
from .contrib.yolov7face import *
from .contrib.retinaface import RetinaFace from .contrib.retinaface import RetinaFace
from .contrib.scrfd import SCRFD from .contrib.scrfd import SCRFD
from .contrib.ultraface import UltraFace from .contrib.ultraface import UltraFace

View File

@@ -0,0 +1,166 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import logging
from .... import FastDeployModel, ModelFormat
from .... import c_lib_wrap as C
class Yolov7FacePreprocessor:
def __init__(self):
"""Create a preprocessor for Yolov7Face
"""
self._preprocessor = C.vision.facedet.Yolov7Preprocessor()
def run(self, input_ims):
"""Preprocess input images for Yolov7Face
:param: input_ims: (list of numpy.ndarray)The input image
:return: list of FDTensor
"""
return self._preprocessor.run(input_ims)
@property
def size(self):
"""
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [640, 640]
"""
return self._preprocessor.size
@property
def padding_color_value(self):
"""
padding value for preprocessing, default [114.0, 114.0, 114.0]
"""
# padding value, size should be the same as channels
return self._preprocessor.padding_color_value
@property
def is_scale_up(self):
"""
is_scale_up for preprocessing, the input image only can be zoom out, the maximum resize scale cannot exceed 1.0, default true
"""
return self._preprocessor.is_scale_up
@size.setter
def size(self, wh):
assert isinstance(wh, (list, tuple)),\
"The value to set `size` must be type of tuple or list."
assert len(wh) == 2,\
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
len(wh))
self._preprocessor.size = wh
@padding_color_value.setter
def padding_color_value(self, value):
assert isinstance(
value, list
), "The value to set `padding_color_value` must be type of list."
self._preprocessor.padding_color_value = value
@is_scale_up.setter
def is_scale_up(self, value):
assert isinstance(
value,
bool), "The value to set `is_scale_up` must be type of bool."
self._preprocessor.is_scale_up = value
class Yolov7FacePostprocessor:
def __init__(self):
"""Create a postprocessor for Yolov7Face
"""
self._postprocessor = C.vision.facedet.Yolov7FacePostprocessor()
def run(self, runtime_results, ims_info):
"""Postprocess the runtime results for Yolov7Face
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
:param: ims_info: (list of dict)Record input_shape and output_shape
:return: list of DetectionResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
"""
return self._postprocessor.run(runtime_results, ims_info)
@property
def conf_threshold(self):
"""
confidence threshold for postprocessing, default is 0.5
"""
return self._postprocessor.conf_threshold
@property
def nms_threshold(self):
"""
nms threshold for postprocessing, default is 0.45
"""
return self._postprocessor.nms_threshold
@conf_threshold.setter
def conf_threshold(self, conf_threshold):
assert isinstance(conf_threshold, float),\
"The value to set `conf_threshold` must be type of float."
self._postprocessor.conf_threshold = conf_threshold
@nms_threshold.setter
def nms_threshold(self, nms_threshold):
assert isinstance(nms_threshold, float),\
"The value to set `nms_threshold` must be type of float."
self._postprocessor.nms_threshold = nms_threshold
class YOLOv7Face(FastDeployModel):
def __init__(self,
model_file,
params_file="",
runtime_option=None,
model_format=ModelFormat.ONNX):
"""Load a YOLOv7Face model exported by YOLOv7Face.
:param model_file: (str)Path of model file, e.g ./yolov7face.onnx
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
"""
super(YOLOv7Face, self).__init__(runtime_option)
self._model = C.vision.facedet.YOLOv7Face(
model_file, params_file, self._runtime_option, model_format)
assert self.initialized, "YOLOv7Face initialize failed."
def batch_predict(self, images):
"""Classify a batch of input image
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
:return list of DetectionResult
"""
return self._model.batch_predict(images)
@property
def preprocessor(self):
"""Get YOLOv7Preprocessor object of the loaded model
:return YOLOv7Preprocessor
"""
return self._model.preprocessor
@property
def postprocessor(self):
"""Get YOLOv7Postprocessor object of the loaded model
:return YOLOv7Postprocessor
"""
return self._model.postprocessor

View File

@@ -0,0 +1,142 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from fastdeploy import ModelFormat
import fastdeploy as fd
import cv2
import os
import pickle
import numpy as np
import runtime_config as rc
def test_detection_yolov7face():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov7-lite-e.onnx"
input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
input_url2 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000570688.jpg"
result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov7face_result1.pkl"
result_url2 = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov7face_result2.pkl"
fd.download(model_url, "resources")
fd.download(input_url1, "resources")
fd.download(input_url2, "resources")
fd.download(result_url1, "resources")
fd.download(result_url2, "resources")
model_file = "resources/yolov7-lite-e.onnx"
model = fd.vision.facedet.YOLOv7Face(
model_file, runtime_option=rc.test_option)
model.postprocessor.conf_threshold = 0.3
with open("resources/yolov7face_result1.pkl", "rb") as f:
expect1 = pickle.load(f)
with open("resources/yolov7face_result2.pkl", "rb") as f:
expect2 = pickle.load(f)
im1 = cv2.imread("./resources/000000014439.jpg")
im2 = cv2.imread("./resources/000000570688.jpg")
for i in range(3):
# test single predict
result1 = model.predict(im1)
result2 = model.predict(im2)
diff_boxes_1 = np.fabs(
np.array(result1.boxes) - np.array(expect1["boxes"]))
diff_boxes_2 = np.fabs(
np.array(result2.boxes) - np.array(expect2["boxes"]))
diff_scores_1 = np.fabs(
np.array(result1.scores) - np.array(expect1["scores"]))
diff_scores_2 = np.fabs(
np.array(result2.scores) - np.array(expect2["scores"]))
assert diff_boxes_1.max(
) < 1e-03, "There's difference in detection boxes 1."
assert diff_scores_1.max(
) < 1e-04, "There's difference in detection score 1."
assert diff_boxes_2.max(
) < 1e-03, "There's difference in detection boxes 2."
assert diff_scores_2.max(
) < 1e-04, "There's difference in detection score 2."
# test batch predict
results = model.batch_predict([im1, im2])
result1 = results[0]
result2 = results[1]
diff_boxes_1 = np.fabs(
np.array(result1.boxes) - np.array(expect1["boxes"]))
diff_boxes_2 = np.fabs(
np.array(result2.boxes) - np.array(expect2["boxes"]))
diff_scores_1 = np.fabs(
np.array(result1.scores) - np.array(expect1["scores"]))
diff_scores_2 = np.fabs(
np.array(result2.scores) - np.array(expect2["scores"]))
assert diff_boxes_1.max(
) < 1e-03, "There's difference in detection boxes 1."
assert diff_scores_1.max(
) < 1e-04, "There's difference in detection score 1."
assert diff_boxes_2.max(
) < 1e-03, "There's difference in detection boxes 2."
assert diff_scores_2.max(
) < 1e-04, "There's difference in detection score 2."
def test_detection_yolov7face_runtime():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov7-lite-e.onnx"
input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov7_result1.pkl"
fd.download(model_url, "resources")
fd.download(input_url1, "resources")
fd.download(result_url1, "resources")
model_file = "resources/yolov7-lite-e.onnx"
preprocessor = fd.vision.detection.Yolov7FacePreprocessor()
postprocessor = fd.vision.detection.YOLOv7FacePostprocessor()
rc.test_option.set_model_path(model_file, model_format=ModelFormat.ONNX)
rc.test_option.use_openvino_backend()
runtime = fd.Runtime(rc.test_option)
with open("resources/yolov7_result1.pkl", "rb") as f:
expect1 = pickle.load(f)
im1 = cv2.imread("resources/000000014439.jpg")
for i in range(3):
# test runtime
input_tensors, ims_info = preprocessor.run([im1.copy()])
output_tensors = runtime.infer({"images": input_tensors[0]})
results = postprocessor.run(output_tensors, ims_info)
result1 = results[0]
diff_boxes_1 = np.fabs(
np.array(result1.boxes) - np.array(expect1["boxes"]))
diff_scores_1 = np.fabs(
np.array(result1.scores) - np.array(expect1["scores"]))
assert diff_boxes_1.max(
) < 1e-03, "There's difference in detection boxes 1."
assert diff_scores_1.max(
) < 1e-04, "There's difference in detection score 1."
if __name__ == "__main__":
test_detection_yolov7face()
test_detection_yolov7face_runtime()