[Doc]Update English version of some documents (#1083)

* 第一次提交

* 补充一处漏翻译

* deleted:    docs/en/quantize.md

* Update one translation

* Update en version

* Update one translation in code

* Standardize one writing

* Standardize one writing

* Update some en version

* Fix a grammer problem

* Update en version for api/vision result

* Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop

* Checkout the link in README in vision_results/ to the en documents

* Modify a title

* Add link to serving/docs/

* Finish translation of demo.md

* Update english version of serving/docs/

* Update title of readme

* Update some links

* Modify a title

* Update some links

* Update en version of java android README

* Modify some titles

* Modify some titles

* Modify some titles

* modify article to document

* update some english version of documents in examples

* Add english version of documents in examples/visions

* Sync to current branch

* Add english version of documents in examples

* Add english version of documents in examples

* Add english version of documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples
This commit is contained in:
charl-u
2023-01-09 10:08:19 +08:00
committed by GitHub
parent 61c2f87e0c
commit cbf88a46fa
164 changed files with 1557 additions and 777 deletions

View File

@@ -1,28 +1,29 @@
# PaddleDetection C++部署示例
English | [简体中文](README_CN.md)
# PaddleDetection Deployment Examples for C++
本目录下提供`infer_picodet.cc`快速完成PPDetection模型在Rockchip板子上上通过二代NPU加速部署的示例。
`infer_picodet.cc` in this directory provides an example of quickly completing the PPDetection model on Rockchip boards for accelerated deployment via second-generation NPUs.
在部署前,需确认以下两个步骤:
Before deployment, the following two steps need to be confirmed:
1. 软硬件环境满足要求
2. 根据开发环境下载预编译部署库或者从头编译FastDeploy仓库
1. Hardware and software environment meets the requirements.
2. Download the pre-compiled deployment repository or compile the FastDeploy repository from scratch according to the development environment.
以上步骤请参考[RK2代NPU部署库编译](../../../../../../docs/cn/build_and_install/rknpu2.md)实现
For the above steps, please refer to [How to Build RKNPU2 Deployment Environment](../../../../../../docs/en/build_and_install/rknpu2.md).
## 生成基本目录文件
## Generate Basic Directory Files
该例程由以下几个部分组成
The routine consists of the following parts:
```text
.
├── CMakeLists.txt
├── build # 编译文件夹
├── image # 存放图片的文件夹
├── build # Compile Folder
├── image # Folder for images
├── infer_picodet.cc
├── model # 存放模型文件的文件夹
└── thirdpartys # 存放sdk的文件夹
├── model # Folder for models
└── thirdpartys # Folder for sdk
```
首先需要先生成目录结构
First, please build a directory structure
```bash
mkdir build
mkdir images
@@ -30,24 +31,23 @@ mkdir model
mkdir thirdpartys
```
## 编译
## Compile
### 编译并拷贝SDK到thirdpartys文件夹
### Compile and Copy SDK to folder thirdpartys
请参考[RK2代NPU部署库编译](../../../../../../docs/cn/build_and_install/rknpu2.md)仓库编译SDK编译完成后将在build目录下生成
fastdeploy-0.0.3目录请移动它至thirdpartys目录下.
Please refer to [How to Build RKNPU2 Deployment Environment](../../../../../../docs/en/build_and_install/rknpu2.md) to compile SDK.After compiling, the fastdeploy-0.0.3 directory will be created in the build directory, please move it to the thirdpartys directory.
### 拷贝模型文件以及配置文件至model文件夹
在Paddle动态图模型 -> Paddle静态图模型 -> ONNX模型的过程中将生成ONNX文件以及对应的yaml配置文件请将配置文件存放到model文件夹内。
转换为RKNN后的模型文件也需要拷贝至model。
### Copy model and configuration files to folder Model
In the process of Paddle dynamic map model -> Paddle static map model -> ONNX mdoel, ONNX file and the corresponding yaml configuration file will be generated. Please move the configuration file to the folder model.
After converting to RKNN, the model file also needs to be copied to folder model.
### 准备测试图片至image文件夹
### Prepare Test Images to folder image
```bash
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
cp 000000014439.jpg ./images
```
### 编译example
### Compile example
```bash
cd build
@@ -56,7 +56,7 @@ make -j8
make install
```
## 运行例程
## Running Routines
```bash
cd ./build/install
@@ -64,6 +64,6 @@ cd ./build/install
```
- [模型介绍](../../)
- [Python部署](../python)
- [视觉模型预测结果](../../../../../../docs/api/vision_results/)
- [Model Description](../../)
- [Python Deployment](../python)
- [Vision model prediction results](../../../../../../docs/api/vision_results/)

View File

@@ -0,0 +1,69 @@
[English](README.md) | 简体中文
# PaddleDetection C++部署示例
本目录下提供`infer_picodet.cc`快速完成PPDetection模型在Rockchip板子上上通过二代NPU加速部署的示例。
在部署前,需确认以下两个步骤:
1. 软硬件环境满足要求
2. 根据开发环境下载预编译部署库或者从头编译FastDeploy仓库
以上步骤请参考[RK2代NPU部署库编译](../../../../../../docs/cn/build_and_install/rknpu2.md)实现
## 生成基本目录文件
该例程由以下几个部分组成
```text
.
├── CMakeLists.txt
├── build # 编译文件夹
├── image # 存放图片的文件夹
├── infer_picodet.cc
├── model # 存放模型文件的文件夹
└── thirdpartys # 存放sdk的文件夹
```
首先需要先生成目录结构
```bash
mkdir build
mkdir images
mkdir model
mkdir thirdpartys
```
## 编译
### 编译并拷贝SDK到thirdpartys文件夹
请参考[RK2代NPU部署库编译](../../../../../../docs/cn/build_and_install/rknpu2.md)仓库编译SDK编译完成后将在build目录下生成fastdeploy-0.0.3目录请移动它至thirdpartys目录下.
### 拷贝模型文件以及配置文件至model文件夹
在Paddle动态图模型 -> Paddle静态图模型 -> ONNX模型的过程中将生成ONNX文件以及对应的yaml配置文件请将配置文件存放到model文件夹内。
转换为RKNN后的模型文件也需要拷贝至model。
### 准备测试图片至image文件夹
```bash
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
cp 000000014439.jpg ./images
```
### 编译example
```bash
cd build
cmake ..
make -j8
make install
```
## 运行例程
```bash
cd ./build/install
./infer_picodet model/picodet_s_416_coco_lcnet images/000000014439.jpg
```
- [模型介绍](../../)
- [Python部署](../python)
- [视觉模型预测结果](../../../../../../docs/api/vision_results/)