[Doc]Update English version of some documents (#1083)

* 第一次提交

* 补充一处漏翻译

* deleted:    docs/en/quantize.md

* Update one translation

* Update en version

* Update one translation in code

* Standardize one writing

* Standardize one writing

* Update some en version

* Fix a grammer problem

* Update en version for api/vision result

* Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop

* Checkout the link in README in vision_results/ to the en documents

* Modify a title

* Add link to serving/docs/

* Finish translation of demo.md

* Update english version of serving/docs/

* Update title of readme

* Update some links

* Modify a title

* Update some links

* Update en version of java android README

* Modify some titles

* Modify some titles

* Modify some titles

* modify article to document

* update some english version of documents in examples

* Add english version of documents in examples/visions

* Sync to current branch

* Add english version of documents in examples

* Add english version of documents in examples

* Add english version of documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples
This commit is contained in:
charl-u
2023-01-09 10:08:19 +08:00
committed by GitHub
parent 61c2f87e0c
commit cbf88a46fa
164 changed files with 1557 additions and 777 deletions

View File

@@ -1,31 +1,32 @@
# PP-YOLOE-l量化模型 Python部署示例
本目录下提供的`infer.py`,可以帮助用户快速完成PP-YOLOE量化模型在CPU/GPU上的部署推理加速.
English | [简体中文](README_CN.md)
# PP-YOLOE-l Quantitative Model Python Deployment Example
`infer.py` in this directory can help you quickly complete the inference acceleration of PP-YOLOE quantization model deployment on CPU/GPU.
## 部署准备
### FastDeploy环境准备
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. FastDeploy Python whl包安装参考[FastDeploy Python安装](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
## Deployment Preparations
### FastDeploy Environment Preparations
- 1. For the software and hardware requirements, please refer to [FastDeploy Environment Requirements](../../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
- 2. For the installation of FastDeploy Python whl package, please refer to [FastDeploy Python Installation](../../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
### 量化模型准备
- 1. 用户可以直接使用由FastDeploy提供的量化模型进行部署.
- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/common_tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.(注意: 推理量化后的分类模型仍然需要FP32模型文件夹下的infer_cfg.yml文件, 自行量化的模型文件夹内不包含此yaml文件, 用户从FP32模型文件夹下复制此yaml文件到量化后的模型文件夹内即可.)
### Quantized Model Preparations
- 1. You can directly use the quantized model provided by FastDeploy for deployment.
- 2. You can use [one-click automatical compression tool](../../../../../../tools/common_tools/auto_compression/) provided by FastDeploy to quantize model by yourself, and use the generated quantized model for deployment.(Note: The quantized classification model still needs the infer_cfg.yml file in the FP32 model folder. Self-quantized model folder does not contain this yaml file, you can copy it from the FP32 model folder to the quantized model folder.)
## 以量化后的PP-YOLOE-l模型为例, 进行部署
## Take the Quantized PP-YOLOE-l Model as an example for Deployment
```bash
#下载部署示例代码
# Download sample deployment code.
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd /examples/vision/detection/paddledetection/quantize/python
#下载FastDeloy提供的ppyoloe_crn_l_300e_coco量化模型文件和测试图片
# Download the ppyoloe_crn_l_300e_coco quantized model and test images provided by FastDeloy.
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco_qat.tar
tar -xvf ppyoloe_crn_l_300e_coco_qat.tar
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
# 在CPU上使用ONNX Runtime推理量化模型
# Use ONNX Runtime inference quantization model on CPU.
python infer_ppyoloe.py --model ppyoloe_crn_l_300e_coco_qat --image 000000014439.jpg --device cpu --backend ort
# 在GPU上使用TensorRT推理量化模型
# Use TensorRT inference quantization model on GPU.
python infer_ppyoloe.py --model ppyoloe_crn_l_300e_coco_qat --image 000000014439.jpg --device gpu --backend trt
# 在GPU上使用Paddle-TensorRT推理量化模型
# Use Paddle-TensorRT inference quantization model on GPU.
python infer_ppyoloe.py --model ppyoloe_crn_l_300e_coco_qat --image 000000014439.jpg --device gpu --backend pptrt
```