mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-25 17:40:35 +08:00
[Doc]Update English version of some documents (#1083)
* 第一次提交 * 补充一处漏翻译 * deleted: docs/en/quantize.md * Update one translation * Update en version * Update one translation in code * Standardize one writing * Standardize one writing * Update some en version * Fix a grammer problem * Update en version for api/vision result * Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop * Checkout the link in README in vision_results/ to the en documents * Modify a title * Add link to serving/docs/ * Finish translation of demo.md * Update english version of serving/docs/ * Update title of readme * Update some links * Modify a title * Update some links * Update en version of java android README * Modify some titles * Modify some titles * Modify some titles * modify article to document * update some english version of documents in examples * Add english version of documents in examples/visions * Sync to current branch * Add english version of documents in examples * Add english version of documents in examples * Add english version of documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples
This commit is contained in:
@@ -1,36 +1,37 @@
|
||||
# PP-YOLOE-l量化模型 C++部署示例
|
||||
English | [简体中文](README_CN.md)
|
||||
# PP-YOLOE-l Quantitative Model C++ Deployment Example
|
||||
|
||||
本目录下提供的`infer_ppyoloe.cc`,可以帮助用户快速完成PP-YOLOE-l量化模型在CPU/GPU上的部署推理加速.
|
||||
`infer_ppyoloe.cc` in this directory can help you quickly complete the inference acceleration of PP-YOLOE-l quantization model deployment on CPU/GPU.
|
||||
|
||||
## 部署准备
|
||||
### FastDeploy环境准备
|
||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
## Deployment Preparations
|
||||
### FastDeploy Environment Preparations
|
||||
- 1. For the software and hardware requirements, please refer to [FastDeploy Environment Requirements](../../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. For the installation of FastDeploy Python whl package, please refer to [FastDeploy Python Installation](../../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
### 量化模型准备
|
||||
- 1. 用户可以直接使用由FastDeploy提供的量化模型进行部署.
|
||||
- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/common_tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.(注意: 推理量化后的检测模型仍然需要FP32模型文件夹下的infer_cfg.yml文件, 自行量化的模型文件夹内不包含此yaml文件, 用户从FP32模型文件夹下复制此yaml文件到量化后的模型文件夹内即可.)
|
||||
### Quantized Model Preparations
|
||||
- 1. You can directly use the quantized model provided by FastDeploy for deployment..
|
||||
- 2. You can use [one-click automatical compression tool](../../../../../../tools/common_tools/auto_compression/) provided by FastDeploy to quantize model by yourself, and use the generated quantized model for deployment.(Note: The quantized classification model still needs the infer_cfg.yml file in the FP32 model folder. Self-quantized model folder does not contain this yaml file, you can copy it from the FP32 model folder to the quantized model folder.)
|
||||
|
||||
## 以量化后的PP-YOLOE-l模型为例, 进行部署。支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
|
||||
在本目录执行如下命令即可完成编译,以及量化模型部署.
|
||||
## Take the Quantized PP-YOLOE-l Model as an example for Deployment, FastDeploy version 0.7.0 or higher is required (x.x.x>=0.7.0)
|
||||
Run the following commands in this directory to compile and deploy the quantized model.
|
||||
```bash
|
||||
mkdir build
|
||||
cd build
|
||||
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
|
||||
# Download pre-compiled FastDeploy libraries. You can choose the appropriate version from `pre-compiled FastDeploy libraries` mentioned above.
|
||||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
||||
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
||||
make -j
|
||||
|
||||
#下载FastDeloy提供的ppyoloe_crn_l_300e_coco量化模型文件和测试图片
|
||||
# Download the ppyoloe_crn_l_300e_coco quantized model and test images provided by FastDeloy.
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco_qat.tar
|
||||
tar -xvf ppyoloe_crn_l_300e_coco_qat.tar
|
||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||||
|
||||
# 在CPU上使用ONNX Runtime推理量化模型
|
||||
# Use ONNX Runtime inference quantization model on CPU.
|
||||
./infer_ppyoloe_demo ppyoloe_crn_l_300e_coco_qat 000000014439.jpg 0
|
||||
# 在GPU上使用TensorRT推理量化模型
|
||||
# Use TensorRT inference quantization model on GPU.
|
||||
./infer_ppyoloe_demo ppyoloe_crn_l_300e_coco_qat 000000014439.jpg 1
|
||||
# 在GPU上使用Paddle-TensorRT推理量化模型
|
||||
# Use Paddle-TensorRT inference quantization model on GPU.
|
||||
./infer_ppyoloe_demo ppyoloe_crn_l_300e_coco_qat 000000014439.jpg 2
|
||||
```
|
||||
|
||||
@@ -0,0 +1,37 @@
|
||||
[English](README.md) | 简体中文
|
||||
# PP-YOLOE-l量化模型 C++部署示例
|
||||
|
||||
本目录下提供的`infer_ppyoloe.cc`,可以帮助用户快速完成PP-YOLOE-l量化模型在CPU/GPU上的部署推理加速.
|
||||
|
||||
## 部署准备
|
||||
### FastDeploy环境准备
|
||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
### 量化模型准备
|
||||
- 1. 用户可以直接使用由FastDeploy提供的量化模型进行部署.
|
||||
- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/common_tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.(注意: 推理量化后的检测模型仍然需要FP32模型文件夹下的infer_cfg.yml文件, 自行量化的模型文件夹内不包含此yaml文件, 用户从FP32模型文件夹下复制此yaml文件到量化后的模型文件夹内即可.)
|
||||
|
||||
## 以量化后的PP-YOLOE-l模型为例, 进行部署。支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
|
||||
在本目录执行如下命令即可完成编译,以及量化模型部署.
|
||||
```bash
|
||||
mkdir build
|
||||
cd build
|
||||
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
|
||||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
||||
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
||||
make -j
|
||||
|
||||
#下载FastDeloy提供的ppyoloe_crn_l_300e_coco量化模型文件和测试图片
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco_qat.tar
|
||||
tar -xvf ppyoloe_crn_l_300e_coco_qat.tar
|
||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||||
|
||||
# 在CPU上使用ONNX Runtime推理量化模型
|
||||
./infer_ppyoloe_demo ppyoloe_crn_l_300e_coco_qat 000000014439.jpg 0
|
||||
# 在GPU上使用TensorRT推理量化模型
|
||||
./infer_ppyoloe_demo ppyoloe_crn_l_300e_coco_qat 000000014439.jpg 1
|
||||
# 在GPU上使用Paddle-TensorRT推理量化模型
|
||||
./infer_ppyoloe_demo ppyoloe_crn_l_300e_coco_qat 000000014439.jpg 2
|
||||
```
|
||||
Reference in New Issue
Block a user