rename ernie_xxx to ernie4_5_xxx (#3621)

* rename ernie_xxx to ernie4_5_xxx

* ci fix
This commit is contained in:
Yuanle Liu
2025-08-26 19:29:27 +08:00
committed by GitHub
parent 642480f5f6
commit cbce94a00e
37 changed files with 126 additions and 100 deletions

View File

@@ -0,0 +1,512 @@
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
""" process.py """
import copy
import os
from collections import defaultdict
from typing import Any, Dict, List, Union
import numpy as np
from paddleformers.transformers.image_utils import ChannelDimension
from PIL import Image
from fastdeploy.entrypoints.chat_utils import parse_chat_messages
from fastdeploy.input.ernie4_5_tokenizer import Ernie4_5Tokenizer
from fastdeploy.input.utils import IDS_TYPE_FLAG
from fastdeploy.utils import data_processor_logger
from .image_preprocessor.image_preprocessor_adaptive import AdaptiveImageProcessor
from .process_video import read_frames_decord, read_video_decord
from .utils.render_timestamp import render_frame_timestamp
def fancy_print(input_ids, tokenizer, image_patch_id=None):
"""
input_ids: input_ids
tokenizer: the tokenizer of models
"""
i = 0
res = ""
text_ids = []
real_image_token_len = 0
while i < len(input_ids):
if input_ids[i] == image_patch_id:
if len(text_ids) > 0:
res += tokenizer.decode(text_ids)
text_ids = []
real_image_token_len += 1
else:
if real_image_token_len != 0:
res += f"<|IMAGE@{real_image_token_len}|>"
real_image_token_len = 0
text_ids.append(input_ids[i])
i += 1
if len(text_ids) > 0:
res += tokenizer.decode(text_ids)
text_ids = []
return res
class DataProcessor:
"""
Processes multimodal chat messages into model-ready inputs,
handling text, images, and videos with 3D positional embeddings.
"""
CLS_TOKEN = "<|begin_of_sentence|>"
SEP_TOKEN = "<|end_of_sentence|>"
EOS_TOKEN = "</s>"
IMG_START = "<|IMAGE_START|>"
IMG_END = "<|IMAGE_END|>"
VID_START = "<|VIDEO_START|>"
VID_END = "<|VIDEO_END|>"
def __init__(
self,
tokenizer_name: str,
image_preprocessor_name: str,
spatial_conv_size: int = 2,
temporal_conv_size: int = 2,
image_min_pixels: int = 4 * 28 * 28,
image_max_pixels: int = 6177 * 28 * 28,
video_min_pixels: int = 299 * 28 * 28,
video_max_pixels: int = 1196 * 28 * 28,
video_target_frames: int = -1,
video_frames_sample: str = "leading",
video_max_frames: int = 180,
video_min_frames: int = 16,
video_fps: int = 2,
**kwargs,
) -> None:
# Tokenizer and image preprocessor
self.model_name_or_path = tokenizer_name
self._load_tokenizer()
self.tokenizer.ignored_index = -100
self.image_preprocessor = AdaptiveImageProcessor.from_pretrained(image_preprocessor_name)
# Convolution sizes for patch aggregation
self.spatial_conv_size = spatial_conv_size
self.temporal_conv_size = temporal_conv_size
# Pixel constraints
self.image_min_pixels = image_min_pixels
self.image_max_pixels = image_max_pixels
self.video_min_pixels = video_min_pixels
self.video_max_pixels = video_max_pixels
# Video sampling parameters
self.target_frames = video_target_frames
self.frames_sample = video_frames_sample
self.max_frames = video_max_frames
self.min_frames = video_min_frames
self.fps = video_fps
# Special tokens and IDs
self.cls_token = self.CLS_TOKEN
self.sep_token = self.SEP_TOKEN
self.eos_token = self.EOS_TOKEN
self.image_start = self.IMG_START
self.image_end = self.IMG_END
self.video_start = self.VID_START
self.video_end = self.VID_END
self.image_patch_id = self.tokenizer.convert_tokens_to_ids("<|IMAGE_PLACEHOLDER|>")
self.image_start_id = self.tokenizer.convert_tokens_to_ids(self.image_start)
self.video_start_id = self.tokenizer.convert_tokens_to_ids(self.video_start)
self.sep_token_id = self.tokenizer.convert_tokens_to_ids(self.sep_token)
self.eos_token_id = self.tokenizer.convert_tokens_to_ids(self.eos_token)
self.token_type_mapping = self._build_token_type_mapping()
self.is_training = True
self.role_prefixes = {
"system": "",
"user": "User: ",
"bot": "Assistant: ",
"assistant": "Assistant: ",
}
def _build_token_type_mapping(self) -> Dict[Any, int]:
mapping = defaultdict(lambda: IDS_TYPE_FLAG["text"])
for token in (
self.IMG_START,
self.IMG_END,
self.VID_START,
self.VID_END,
):
mapping[token] = IDS_TYPE_FLAG["image"]
mapping[self.image_patch_id] = IDS_TYPE_FLAG["image"]
return mapping
def train(self) -> None:
"""Enable training mode (produces labels)."""
self.is_training = True
def eval(self) -> None:
"""Enable evaluation mode (doesn't produce labels)."""
self.is_training = False
def text2ids(self, text, images=None, videos=None):
"""
Convert chat text into model inputs.
Returns a dict with input_ids, token_type_ids, position_ids, images, grid_thw, image_type_ids, labels.
"""
outputs = {
"input_ids": [],
"token_type_ids": [],
"position_ids": [],
"images": [],
"grid_thw": [],
"image_type_ids": [],
"labels": [],
"cur_position": 0,
"pic_cnt": 0,
"video_cnt": 0,
}
IMAGE_PLACEHOLDER = "<|image@placeholder|>"
VIDEO_PLACEHOLDER = "<|video@placeholder|>"
IMAGE_PLACEHOLDER_LEN = len(IMAGE_PLACEHOLDER)
VIDEO_PLACEHOLDER_LEN = len(VIDEO_PLACEHOLDER)
st, image_idx, video_idx = 0, 0, 0
while st < len(text):
image_pos = text.find(IMAGE_PLACEHOLDER, st)
image_pos = len(text) if image_pos == -1 else image_pos
video_pos = text.find(VIDEO_PLACEHOLDER, st)
video_pos = len(text) if video_pos == -1 else video_pos
ed = min(image_pos, video_pos)
self._add_text(text[st:ed], outputs)
if ed == len(text):
break
if ed == image_pos:
self._add_image(images[image_idx], outputs)
image_idx += 1
st = ed + IMAGE_PLACEHOLDER_LEN
else:
item = videos[video_idx]
if isinstance(item, dict):
frames = self._load_and_process_video(item["video"], item)
else:
frames = self._load_and_process_video(item, {})
self._add_video(frames, outputs)
video_idx += 1
st = ed + VIDEO_PLACEHOLDER_LEN
return outputs
def request2ids(
self, request: Dict[str, Any], tgts: List[str] = None
) -> Dict[str, Union[np.ndarray, List[np.ndarray], None]]:
"""
Convert chat messages into model inputs.
Returns a dict with input_ids, token_type_ids, position_ids, images, grid_thw, image_type_ids, labels.
"""
outputs = {
"input_ids": [],
"token_type_ids": [],
"position_ids": [],
"images": [],
"grid_thw": [],
"image_type_ids": [],
"labels": [],
"cur_position": 0,
"pic_cnt": 0,
"video_cnt": 0,
}
messages = parse_chat_messages(request.get("messages"))
image_message_list = []
for msg in messages:
role = msg.get("role")
assert role in self.role_prefixes, f"Unsupported role: {role}"
content_items = msg.get("content")
if not isinstance(content_items, list):
content_items = [content_items]
for item in content_items:
if isinstance(item, dict) and item.get("type") in [
"image",
"video",
]:
image_message_list.append(item)
prompt_token_ids = self.apply_chat_template(request)
if len(prompt_token_ids) == 0:
raise ValueError("Invalid input: prompt_token_ids must be a non-empty sequence of token IDs")
image_start_index = 0
image_message_index = 0
for i in range(len(prompt_token_ids)):
if prompt_token_ids[i] in [
self.image_start_id,
self.video_start_id,
]:
self._add_text(prompt_token_ids[image_start_index : i + 1], outputs)
image_start_index = i + 1
image_message = image_message_list[image_message_index]
if image_message["type"] == "image":
img = image_message.get("image")
if img is None:
continue
outputs["pic_cnt"] += 1
self._add_image(img, outputs)
elif image_message["type"] == "video":
video_bytes = image_message.get("video")
if video_bytes is None:
continue
frames = self._load_and_process_video(video_bytes, image_message)
outputs["video_cnt"] += 1
self._add_video(frames, outputs)
image_message_index += 1
self._add_text(prompt_token_ids[image_start_index:], outputs)
if self.is_training:
assert tgts, "training must give tgt !"
self._extract_labels(outputs, tgts)
return outputs
def _add_special_token(self, token: Union[str, int], outputs: Dict) -> None:
token_id = token if isinstance(token, int) else self.tokenizer.convert_tokens_to_ids(token)
outputs["input_ids"].append(token_id)
outputs["token_type_ids"].append(self.token_type_mapping[token])
pos = outputs["cur_position"]
outputs["position_ids"].append([pos] * 3)
outputs["cur_position"] += 1
def _add_text(self, tokens, outputs: Dict) -> None:
if isinstance(tokens, str):
tokens = self.tokenizer.encode(tokens, add_special_tokens=False)["input_ids"]
outputs["input_ids"].extend(tokens)
outputs["token_type_ids"].extend([IDS_TYPE_FLAG["text"]] * len(tokens))
start = outputs["cur_position"]
for i in range(len(tokens)):
outputs["position_ids"].append([start + i] * 3)
outputs["cur_position"] += len(tokens)
def _add_image(self, img, outputs: Dict) -> None:
patches_h, patches_w = self.image_preprocessor.get_smarted_resize(
img.height,
img.width,
min_pixels=self.image_min_pixels,
max_pixels=self.image_max_pixels,
)[1]
num_tokens = (patches_h * patches_w) // (self.spatial_conv_size**2)
outputs["input_ids"].extend([self.image_patch_id] * num_tokens)
outputs["token_type_ids"].extend([IDS_TYPE_FLAG["image"]] * num_tokens)
pos_ids = self._compute_3d_positions(1, patches_h, patches_w, outputs["cur_position"])
outputs["position_ids"].extend(pos_ids)
outputs["cur_position"] = np.max(pos_ids) + 1
# Preprocess pixels
ret = self.image_preprocessor.preprocess(
images=[img.convert("RGB")],
do_normalize=False,
do_rescale=False,
predetermined_grid_thw=np.array([[patches_h, patches_w]]),
do_convert_rgb=True,
input_data_format=ChannelDimension.LAST,
)
outputs["images"].append(ret["pixel_values"])
outputs["grid_thw"].append(ret["image_grid_thw"])
outputs["image_type_ids"].append(0)
def _add_video(self, frames, outputs: Dict) -> None:
patches_h, patches_w = self.image_preprocessor.get_smarted_resize(
frames[0].height,
frames[0].width,
min_pixels=self.video_min_pixels,
max_pixels=self.video_max_pixels,
)[1]
num_frames = len(frames)
num_tokens = (num_frames * patches_h * patches_w) // (self.spatial_conv_size**2 * self.temporal_conv_size)
pixel_stack = np.stack([np.array(f.convert("RGB")) for f in frames], axis=0)
ret = self.image_preprocessor.preprocess(
images=None,
videos=pixel_stack,
do_normalize=False,
do_rescale=False,
predetermined_grid_thw=np.array([[patches_h, patches_w]] * num_frames),
do_convert_rgb=True,
input_data_format=ChannelDimension.LAST,
)
outputs["images"].append(ret["pixel_values_videos"])
outputs["grid_thw"].append(ret["video_grid_thw"])
outputs["image_type_ids"].extend([1] * num_frames)
outputs["input_ids"].extend([self.image_patch_id] * num_tokens)
outputs["token_type_ids"].extend([IDS_TYPE_FLAG["video"]] * num_tokens)
pos_ids = self._compute_3d_positions(num_frames, patches_h, patches_w, outputs["cur_position"])
outputs["position_ids"].extend(pos_ids)
outputs["cur_position"] = np.max(pos_ids) + 1
def _extract_labels(self, outputs: Dict, tgts: List[str]) -> None:
input_ids = copy.deepcopy(outputs["input_ids"])
labels = [self.tokenizer.ignored_index] * len(input_ids)
tgt_count = input_ids.count(self.sep_token_id)
assert tgt_count == len(tgts), f"len(tgts) != len(src) {len(tgts)} vs {tgt_count}"
tgt_index = 0
for i, token_id in enumerate(input_ids):
if token_id == self.sep_token_id:
labels_token = self.tokenizer.tokenize(tgts[tgt_index])
labels_token_id = self.tokenizer.convert_tokens_to_ids(labels_token)
labels[i - len(labels_token_id) : i] = labels_token_id
labels[i] = self.eos_token_id # </s>
tgt_index += 1
outputs["labels"] = labels
def _load_and_process_video(self, url: str, item: Dict) -> List[Image.Image]:
reader, meta, path = read_video_decord(url, save_to_disk=False)
video_frame_args = dict()
video_frame_args["fps"] = item.get("fps", self.fps)
video_frame_args["min_frames"] = item.get("min_frames", self.min_frames)
video_frame_args["max_frames"] = item.get("max_frames", self.max_frames)
video_frame_args["target_frames"] = item.get("target_frames", self.target_frames)
video_frame_args["frames_sample"] = item.get("frames_sample", self.frames_sample)
video_frame_args = self._set_video_frame_args(video_frame_args, meta)
frames_data, _, timestamps = read_frames_decord(
path,
reader,
meta,
target_frames=video_frame_args["target_frames"],
target_fps=video_frame_args["fps"],
frames_sample=video_frame_args["frames_sample"],
save_to_disk=False,
)
frames: List[Image.Image] = []
for img_array, ts in zip(frames_data, timestamps):
frames.append(render_frame_timestamp(img_array, ts))
# Ensure even number of frames for temporal conv
if len(frames) % 2 != 0:
frames.append(copy.deepcopy(frames[-1]))
return frames
def _set_video_frame_args(self, video_frame_args, video_meta):
"""
根据已知参数和优先级,设定最终的抽帧参数
"""
# 优先级video_target_frames > (video_min_frames, video_max_frames) > video_fps
if video_frame_args["target_frames"] > 0:
if video_frame_args["fps"] >= 0:
raise ValueError("fps must be negative if target_frames is given")
if (
video_frame_args["min_frames"] > 0
and video_frame_args["target_frames"] < video_frame_args["min_frames"]
):
raise ValueError("target_frames must be larger than min_frames")
if (
video_frame_args["max_frames"] > 0
and video_frame_args["target_frames"] > video_frame_args["max_frames"]
):
raise ValueError("target_frames must be smaller than max_frames")
else:
if video_frame_args["fps"] < 0:
raise ValueError("Must provide either positive target_fps or positive target_frames.")
# 先计算在video_fps下抽到的帧数
frames_to_extract = int(video_meta["duration"] * video_frame_args["fps"])
# 判断是否在目标区间内如果不是则取target_frames为上界或下界
if (
video_frame_args["min_frames"] > 0
and video_frame_args["max_frames"] > 0
and video_frame_args["min_frames"] > video_frame_args["max_frames"]
):
raise ValueError("min_frames must be smaller than max_frames")
if video_frame_args["min_frames"] > 0 and frames_to_extract < video_frame_args["min_frames"]:
video_frame_args["target_frames"] = video_frame_args["min_frames"]
video_frame_args["fps"] = -1
if video_frame_args["max_frames"] > 0 and frames_to_extract > video_frame_args["max_frames"]:
video_frame_args["target_frames"] = video_frame_args["max_frames"]
video_frame_args["fps"] = -1
return video_frame_args
def _compute_3d_positions(self, t: int, h: int, w: int, start_idx: int) -> List[List[int]]:
# Downsample time if needed
t_eff = t // self.temporal_conv_size if t != 1 else 1
gh, gw = h // self.spatial_conv_size, w // self.spatial_conv_size
time_idx = np.repeat(np.arange(t_eff), gh * gw)
h_idx = np.tile(np.repeat(np.arange(gh), gw), t_eff)
w_idx = np.tile(np.arange(gw), t_eff * gh)
coords = list(zip(time_idx, h_idx, w_idx))
return [[start_idx + ti, start_idx + hi, start_idx + wi] for ti, hi, wi in coords]
def _load_tokenizer(self):
"""
load tokenizer
Returns:
tokenizer (AutoTokenizer)
"""
vocab_file_names = [
"tokenizer.model",
"spm.model",
"ernie_token_100k.model",
]
for i in range(len(vocab_file_names)):
if os.path.exists(os.path.join(self.model_name_or_path, vocab_file_names[i])):
Ernie4_5Tokenizer.resource_files_names["vocab_file"] = vocab_file_names[i]
break
self.tokenizer = Ernie4_5Tokenizer.from_pretrained(self.model_name_or_path)
def apply_chat_template(self, request):
"""
Convert multi-turn messages into ID sequences.
Args:
messages: Either a request dict containing 'messages' field,
or a list of message dicts directly
Returns:
List of token IDs as strings (converted from token objects)
"""
if self.tokenizer.chat_template is None:
raise ValueError("This model does not support chat_template.")
prompt_token_template = self.tokenizer.apply_chat_template(
request,
tokenize=False,
add_generation_prompt=request.get("add_generation_prompt", True),
chat_template=request.get("chat_template", None),
)
prompt_token_str = prompt_token_template.replace("<|image@placeholder|>", "").replace(
"<|video@placeholder|>", ""
)
request["text_after_process"] = prompt_token_template
tokens = self.tokenizer.tokenize(prompt_token_str)
token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
data_processor_logger.info(
f"req_id:{request.get('request_id', ''), } tokens: {tokens}, token_ids: {token_ids}"
)
return token_ids