[Model] 新增scrfd rknpu2代码 (#504)

* * 新增scrfd rknpu2代码

* * 新增scrfd python代码

* 修正文档

* 修正文档以及部分错误

* 修改文档

* 修复部分错误

* 修复部分错误

* 修复部分错误

* scrfd更新代码

* scrfd更新代码
This commit is contained in:
Zheng_Bicheng
2022-11-10 10:05:15 +08:00
committed by GitHub
parent 3319a5bdb2
commit ca0de42d0b
12 changed files with 395 additions and 11 deletions

View File

@@ -0,0 +1,32 @@
# SCRFD Python部署示例
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../../docs/cn/build_and_install/rknpu2.md)
本目录下提供`infer.py`快速完成SCRFD在RKNPU上部署的示例。执行如下脚本即可完成
```bash
# 下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/facedet/scrfd/rknpu2/python
# 下载图片
wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg
# 推理
python3 infer.py --model_file ./scrfd_500m_bnkps_shape640x640_rk3588.rknn \
--image test_lite_face_detector_3.jpg
```
## 注意事项
RKNPU上对模型的输入要求是使用NHWC格式且图片归一化操作会在转RKNN模型时内嵌到模型中因此我们在使用FastDeploy部署时
需要先调用DisableNormalizePermute(C++)或`disable_normalize_permute(Python),在预处理阶段禁用归一化以及数据格式的转换。
## 其它文档
- [SCRFD 模型介绍](../README.md)
- [SCRFD C++部署](../cpp/README.md)
- [模型预测结果说明](../../../../../../docs/api/vision_results/README.md)
- [转换SCRFD RKNN模型文档](../README.md)

View File

@@ -0,0 +1,58 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_file", required=True, help="Path of FaceDet model.")
parser.add_argument(
"--image", type=str, required=True, help="Path of test image file.")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
option.use_rknpu2()
return option
args = parse_arguments()
# 配置runtime加载模型
runtime_option = build_option(args)
model_file = args.model_file
params_file = ""
model = fd.vision.facedet.SCRFD(
model_file,
params_file,
runtime_option=runtime_option,
model_format=fd.ModelFormat.RKNN)
model.disable_normalize_and_permute()
# 预测图片分割结果
im = cv2.imread(args.image)
result = model.predict(im.copy())
print(result)
# 可视化结果
vis_im = fd.vision.vis_face_detection(im, result)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")