mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
【BugFix】completion接口echo回显支持 (#3245)
* wenxin-tools-511,修复v1/completion无法回显的问题。 * 支持多prompt的回显 * 支持多prompt情况下的流式回显 * 补充了 completion 接口支持 echo 的单元测试 * pre-commit * 移除了多余的test文件 * 修复了completion接口echo支持的单测方法 * 补充了单元测试文件 * 补充单测 * unittest * 补充单测 * 修复单测 * 删除不必要的assert. * 重新提交 * 更新测试方法 * ut * 验证是否是正确思路单测 * 验证是否是正确思路单测 * 验证是否是正确思路单测3 * 优化单测代码,有针对性地缩小单测范围。 * 优化单测代码2,有针对性地缩小单测范围。 * 优化单测代码3,有针对性地缩小单测范围。 * support 'echo' in chat/completion. * update * update * update * update * update * update * 补充了关于tokenid的单元测试 * update * 修正index错误 * 修正index错误
This commit is contained in:
@@ -241,6 +241,14 @@ class OpenAIServingCompletion:
|
|||||||
if dealer is not None:
|
if dealer is not None:
|
||||||
dealer.close()
|
dealer.close()
|
||||||
|
|
||||||
|
async def _echo_back_prompt(self, request, res, idx):
|
||||||
|
if res["outputs"].get("send_idx", -1) == 0 and request.echo:
|
||||||
|
if isinstance(request.prompt, list):
|
||||||
|
prompt_text = request.prompt[idx]
|
||||||
|
else:
|
||||||
|
prompt_text = request.prompt
|
||||||
|
res["outputs"]["text"] = prompt_text + (res["outputs"]["text"] or "")
|
||||||
|
|
||||||
def calc_finish_reason(self, max_tokens, token_num, output, tool_called):
|
def calc_finish_reason(self, max_tokens, token_num, output, tool_called):
|
||||||
if max_tokens is None or token_num != max_tokens:
|
if max_tokens is None or token_num != max_tokens:
|
||||||
if tool_called or output.get("tool_call"):
|
if tool_called or output.get("tool_call"):
|
||||||
@@ -338,6 +346,7 @@ class OpenAIServingCompletion:
|
|||||||
else:
|
else:
|
||||||
arrival_time = res["metrics"]["arrival_time"] - inference_start_time[idx]
|
arrival_time = res["metrics"]["arrival_time"] - inference_start_time[idx]
|
||||||
|
|
||||||
|
await self._echo_back_prompt(request, res, idx)
|
||||||
output = res["outputs"]
|
output = res["outputs"]
|
||||||
output_top_logprobs = output["top_logprobs"]
|
output_top_logprobs = output["top_logprobs"]
|
||||||
logprobs_res: Optional[CompletionLogprobs] = None
|
logprobs_res: Optional[CompletionLogprobs] = None
|
||||||
@@ -450,7 +459,7 @@ class OpenAIServingCompletion:
|
|||||||
final_res = final_res_batch[idx]
|
final_res = final_res_batch[idx]
|
||||||
prompt_token_ids = prompt_batched_token_ids[idx]
|
prompt_token_ids = prompt_batched_token_ids[idx]
|
||||||
assert prompt_token_ids is not None
|
assert prompt_token_ids is not None
|
||||||
prompt_text = final_res["prompt"]
|
prompt_text = request.prompt
|
||||||
completion_token_ids = completion_batched_token_ids[idx]
|
completion_token_ids = completion_batched_token_ids[idx]
|
||||||
|
|
||||||
output = final_res["outputs"]
|
output = final_res["outputs"]
|
||||||
@@ -468,16 +477,14 @@ class OpenAIServingCompletion:
|
|||||||
|
|
||||||
if request.echo:
|
if request.echo:
|
||||||
assert prompt_text is not None
|
assert prompt_text is not None
|
||||||
if request.max_tokens == 0:
|
|
||||||
token_ids = prompt_token_ids
|
|
||||||
output_text = prompt_text
|
|
||||||
else:
|
|
||||||
token_ids = [*prompt_token_ids, *output["token_ids"]]
|
token_ids = [*prompt_token_ids, *output["token_ids"]]
|
||||||
output_text = prompt_text + output["text"]
|
if isinstance(prompt_text, list):
|
||||||
|
output_text = prompt_text[idx] + output["text"]
|
||||||
|
else:
|
||||||
|
output_text = str(prompt_text) + output["text"]
|
||||||
else:
|
else:
|
||||||
token_ids = output["token_ids"]
|
token_ids = output["token_ids"]
|
||||||
output_text = output["text"]
|
output_text = output["text"]
|
||||||
|
|
||||||
finish_reason = self.calc_finish_reason(request.max_tokens, final_res["output_token_ids"], output, False)
|
finish_reason = self.calc_finish_reason(request.max_tokens, final_res["output_token_ids"], output, False)
|
||||||
|
|
||||||
choice_data = CompletionResponseChoice(
|
choice_data = CompletionResponseChoice(
|
||||||
|
177
test/entrypoints/openai/test_completion_echo.py
Normal file
177
test/entrypoints/openai/test_completion_echo.py
Normal file
@@ -0,0 +1,177 @@
|
|||||||
|
import unittest
|
||||||
|
from unittest.mock import MagicMock, patch
|
||||||
|
|
||||||
|
from fastdeploy.entrypoints.openai.serving_completion import (
|
||||||
|
CompletionRequest,
|
||||||
|
OpenAIServingCompletion,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class YourClass:
|
||||||
|
async def _1(self, a, b, c):
|
||||||
|
if b["outputs"].get("send_idx", -1) == 0 and a.echo:
|
||||||
|
if isinstance(a.prompt, list):
|
||||||
|
text = a.prompt[c]
|
||||||
|
else:
|
||||||
|
text = a.prompt
|
||||||
|
b["outputs"]["text"] = text + (b["outputs"]["text"] or "")
|
||||||
|
|
||||||
|
|
||||||
|
class TestCompletionEcho(unittest.IsolatedAsyncioTestCase):
|
||||||
|
def setUp(self):
|
||||||
|
self.mock_engine = MagicMock()
|
||||||
|
self.completion_handler = None
|
||||||
|
|
||||||
|
def test_single_prompt_non_streaming(self):
|
||||||
|
"""测试单prompt非流式响应"""
|
||||||
|
self.completion_handler = OpenAIServingCompletion(self.mock_engine, pid=123, ips=None, max_waiting_time=30)
|
||||||
|
|
||||||
|
request = CompletionRequest(prompt="test prompt", max_tokens=10, echo=True, logprobs=1)
|
||||||
|
|
||||||
|
mock_output = {
|
||||||
|
"outputs": {
|
||||||
|
"text": " generated text",
|
||||||
|
"token_ids": [1, 2, 3],
|
||||||
|
"top_logprobs": {"token1": -0.1, "token2": -0.2},
|
||||||
|
"finished": True,
|
||||||
|
},
|
||||||
|
"output_token_ids": 3,
|
||||||
|
}
|
||||||
|
self.mock_engine.generate.return_value = [mock_output]
|
||||||
|
|
||||||
|
response = self.completion_handler.request_output_to_completion_response(
|
||||||
|
final_res_batch=[mock_output],
|
||||||
|
request=request,
|
||||||
|
request_id="test_id",
|
||||||
|
created_time=12345,
|
||||||
|
model_name="test_model",
|
||||||
|
prompt_batched_token_ids=[[1, 2]],
|
||||||
|
completion_batched_token_ids=[[3, 4, 5]],
|
||||||
|
text_after_process_list=["test prompt"],
|
||||||
|
)
|
||||||
|
|
||||||
|
self.assertEqual(response.choices[0].text, "test prompt generated text")
|
||||||
|
|
||||||
|
async def test_echo_back_prompt_and_streaming(self):
|
||||||
|
"""测试_echo_back_prompt方法和流式响应的prompt拼接逻辑"""
|
||||||
|
self.completion_handler = OpenAIServingCompletion(self.mock_engine, pid=123, ips=None, max_waiting_time=30)
|
||||||
|
|
||||||
|
request = CompletionRequest(prompt="test prompt", max_tokens=10, stream=True, echo=True)
|
||||||
|
|
||||||
|
mock_response = {"outputs": {"text": "test output", "token_ids": [1, 2, 3], "finished": True}}
|
||||||
|
|
||||||
|
with patch.object(self.completion_handler, "_echo_back_prompt") as mock_echo:
|
||||||
|
|
||||||
|
def mock_echo_side_effect(req, res, idx):
|
||||||
|
res["outputs"]["text"] = req.prompt + res["outputs"]["text"]
|
||||||
|
|
||||||
|
mock_echo.side_effect = mock_echo_side_effect
|
||||||
|
|
||||||
|
await self.completion_handler._echo_back_prompt(request, mock_response, 0)
|
||||||
|
|
||||||
|
mock_echo.assert_called_once_with(request, mock_response, 0)
|
||||||
|
|
||||||
|
self.assertEqual(mock_response["outputs"]["text"], "test prompttest output")
|
||||||
|
self.assertEqual(request.prompt, "test prompt")
|
||||||
|
|
||||||
|
def test_multi_prompt_non_streaming(self):
|
||||||
|
"""测试多prompt非流式响应"""
|
||||||
|
self.completion_handler = OpenAIServingCompletion(self.mock_engine, pid=123, ips=None, max_waiting_time=30)
|
||||||
|
|
||||||
|
request = CompletionRequest(prompt=["prompt1", "prompt2"], max_tokens=10, echo=True)
|
||||||
|
|
||||||
|
mock_outputs = [
|
||||||
|
{
|
||||||
|
"outputs": {"text": " response1", "token_ids": [1, 2], "top_logprobs": None, "finished": True},
|
||||||
|
"output_token_ids": 2,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"outputs": {"text": " response2", "token_ids": [3, 4], "top_logprobs": None, "finished": True},
|
||||||
|
"output_token_ids": 2,
|
||||||
|
},
|
||||||
|
]
|
||||||
|
self.mock_engine.generate.return_value = mock_outputs
|
||||||
|
|
||||||
|
response = self.completion_handler.request_output_to_completion_response(
|
||||||
|
final_res_batch=mock_outputs,
|
||||||
|
request=request,
|
||||||
|
request_id="test_id",
|
||||||
|
created_time=12345,
|
||||||
|
model_name="test_model",
|
||||||
|
prompt_batched_token_ids=[[1], [2]],
|
||||||
|
completion_batched_token_ids=[[1, 2], [3, 4]],
|
||||||
|
text_after_process_list=["prompt1", "prompt2"],
|
||||||
|
)
|
||||||
|
|
||||||
|
self.assertEqual(len(response.choices), 2)
|
||||||
|
self.assertEqual(response.choices[0].text, "prompt1 response1")
|
||||||
|
self.assertEqual(response.choices[1].text, "prompt2 response2")
|
||||||
|
|
||||||
|
async def test_multi_prompt_streaming(self):
|
||||||
|
self.completion_handler = OpenAIServingCompletion(self.mock_engine, pid=123, ips=None, max_waiting_time=30)
|
||||||
|
|
||||||
|
request = CompletionRequest(prompt=["prompt1", "prompt2"], max_tokens=10, stream=True, echo=True)
|
||||||
|
|
||||||
|
mock_responses = [
|
||||||
|
{"outputs": {"text": " response1", "token_ids": [1, 2], "finished": True}},
|
||||||
|
{"outputs": {"text": " response2", "token_ids": [3, 4], "finished": True}},
|
||||||
|
]
|
||||||
|
|
||||||
|
with patch.object(self.completion_handler, "_echo_back_prompt") as mock_echo:
|
||||||
|
|
||||||
|
def mock_echo_side_effect(req, res, idx):
|
||||||
|
res["outputs"]["text"] = req.prompt[idx] + res["outputs"]["text"]
|
||||||
|
|
||||||
|
mock_echo.side_effect = mock_echo_side_effect
|
||||||
|
|
||||||
|
await self.completion_handler._echo_back_prompt(request, mock_responses[0], 0)
|
||||||
|
await self.completion_handler._echo_back_prompt(request, mock_responses[1], 1)
|
||||||
|
|
||||||
|
self.assertEqual(mock_echo.call_count, 2)
|
||||||
|
mock_echo.assert_any_call(request, mock_responses[0], 0)
|
||||||
|
mock_echo.assert_any_call(request, mock_responses[1], 1)
|
||||||
|
|
||||||
|
self.assertEqual(mock_responses[0]["outputs"]["text"], "prompt1 response1")
|
||||||
|
self.assertEqual(mock_responses[1]["outputs"]["text"], "prompt2 response2")
|
||||||
|
self.assertEqual(request.prompt, ["prompt1", "prompt2"])
|
||||||
|
|
||||||
|
async def test_echo_back_prompt_and_streaming1(self):
|
||||||
|
request = CompletionRequest(echo=True, prompt=["Hello", "World"])
|
||||||
|
res = {"outputs": {"send_idx": 0, "text": "!"}}
|
||||||
|
idx = 0
|
||||||
|
|
||||||
|
instance = OpenAIServingCompletion(self.mock_engine, pid=123, ips=None, max_waiting_time=30)
|
||||||
|
await instance._echo_back_prompt(request, res, idx)
|
||||||
|
self.assertEqual(res["outputs"]["text"], "Hello!")
|
||||||
|
|
||||||
|
async def test_1_prompt_is_string_and_send_idx_is_0(self):
|
||||||
|
request = CompletionRequest(echo=True, prompt="Hello")
|
||||||
|
res = {"outputs": {"send_idx": 0, "text": "!"}}
|
||||||
|
idx = 0
|
||||||
|
|
||||||
|
instance = OpenAIServingCompletion(self.mock_engine, pid=123, ips=None, max_waiting_time=30)
|
||||||
|
await instance._echo_back_prompt(request, res, idx)
|
||||||
|
self.assertEqual(res["outputs"]["text"], "Hello!")
|
||||||
|
|
||||||
|
async def test_1_send_idx_is_not_0(self):
|
||||||
|
request = CompletionRequest(echo=True, prompt="Hello")
|
||||||
|
res = {"outputs": {"send_idx": 1, "text": "!"}}
|
||||||
|
idx = 0
|
||||||
|
|
||||||
|
instance = OpenAIServingCompletion(self.mock_engine, pid=123, ips=None, max_waiting_time=30)
|
||||||
|
await instance._echo_back_prompt(request, res, idx)
|
||||||
|
self.assertEqual(res["outputs"]["text"], "!")
|
||||||
|
|
||||||
|
async def test_1_echo_is_false(self):
|
||||||
|
"""测试echo为False时,_echo_back_prompt不拼接prompt"""
|
||||||
|
request = CompletionRequest(echo=False, prompt="Hello")
|
||||||
|
res = {"outputs": {"send_idx": 0, "text": "!"}}
|
||||||
|
idx = 0
|
||||||
|
|
||||||
|
instance = OpenAIServingCompletion(self.mock_engine, pid=123, ips=None, max_waiting_time=30)
|
||||||
|
await instance._echo_back_prompt(request, res, idx)
|
||||||
|
self.assertEqual(res["outputs"]["text"], "!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
unittest.main()
|
@@ -55,7 +55,6 @@ class TestOpenAIServingCompletion(unittest.TestCase):
|
|||||||
openai_serving_completion = OpenAIServingCompletion(engine_client, "pid", "ips", 360)
|
openai_serving_completion = OpenAIServingCompletion(engine_client, "pid", "ips", 360)
|
||||||
final_res_batch: List[RequestOutput] = [
|
final_res_batch: List[RequestOutput] = [
|
||||||
{
|
{
|
||||||
"prompt": "Hello, world!",
|
|
||||||
"outputs": {
|
"outputs": {
|
||||||
"token_ids": [1, 2, 3],
|
"token_ids": [1, 2, 3],
|
||||||
"text": " world!",
|
"text": " world!",
|
||||||
@@ -67,7 +66,6 @@ class TestOpenAIServingCompletion(unittest.TestCase):
|
|||||||
"output_token_ids": 3,
|
"output_token_ids": 3,
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"prompt": "Hello, world!",
|
|
||||||
"outputs": {
|
"outputs": {
|
||||||
"token_ids": [4, 5, 6],
|
"token_ids": [4, 5, 6],
|
||||||
"text": " world!",
|
"text": " world!",
|
||||||
@@ -81,12 +79,13 @@ class TestOpenAIServingCompletion(unittest.TestCase):
|
|||||||
]
|
]
|
||||||
|
|
||||||
request: CompletionRequest = Mock()
|
request: CompletionRequest = Mock()
|
||||||
|
request.prompt = "Hello, world!"
|
||||||
|
request.echo = True
|
||||||
request_id = "test_request_id"
|
request_id = "test_request_id"
|
||||||
created_time = 1655136000
|
created_time = 1655136000
|
||||||
model_name = "test_model"
|
model_name = "test_model"
|
||||||
prompt_batched_token_ids = [[1, 2, 3], [4, 5, 6]]
|
prompt_batched_token_ids = [[1, 2, 3], [4, 5, 6]]
|
||||||
completion_batched_token_ids = [[7, 8, 9], [10, 11, 12]]
|
completion_batched_token_ids = [[7, 8, 9], [10, 11, 12]]
|
||||||
|
|
||||||
completion_response = openai_serving_completion.request_output_to_completion_response(
|
completion_response = openai_serving_completion.request_output_to_completion_response(
|
||||||
final_res_batch=final_res_batch,
|
final_res_batch=final_res_batch,
|
||||||
request=request,
|
request=request,
|
||||||
|
Reference in New Issue
Block a user