mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
[Docs] Pick paddleclas fastdeploy docs from PaddleClas (#1654)
* Adjust folders structures in paddleclas * remove useless files * Update sophgo * improve readme
This commit is contained in:
@@ -0,0 +1,50 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model_file", required=True, help="Path of rknn model.")
|
||||
parser.add_argument("--config_file", required=True, help="Path of config.")
|
||||
parser.add_argument(
|
||||
"--image", type=str, required=True, help="Path of test image file.")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parse_arguments()
|
||||
|
||||
model_file = args.model_file
|
||||
params_file = ""
|
||||
config_file = args.config_file
|
||||
# 配置runtime,加载模型
|
||||
runtime_option = fd.RuntimeOption()
|
||||
runtime_option.use_rknpu2()
|
||||
model = fd.vision.classification.ResNet50vd(
|
||||
model_file,
|
||||
params_file,
|
||||
config_file,
|
||||
runtime_option=runtime_option,
|
||||
model_format=fd.ModelFormat.RKNN)
|
||||
# 禁用通道转换
|
||||
model.preprocessor.disable_permute()
|
||||
im = cv2.imread(args.image)
|
||||
result = model.predict(im, topk=1)
|
||||
print(result)
|
Reference in New Issue
Block a user