mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-17 22:21:48 +08:00
[Docs] Pick paddleclas fastdeploy docs from PaddleClas (#1654)
* Adjust folders structures in paddleclas * remove useless files * Update sophgo * improve readme
This commit is contained in:
@@ -0,0 +1,14 @@
|
||||
PROJECT(infer_demo C CXX)
|
||||
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
|
||||
|
||||
# 指定下载解压后的fastdeploy库路径
|
||||
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
|
||||
|
||||
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
|
||||
|
||||
# 添加FastDeploy依赖头文件
|
||||
include_directories(${FASTDEPLOY_INCS})
|
||||
|
||||
add_executable(infer_demo ${PROJECT_SOURCE_DIR}/infer.cc)
|
||||
# 添加FastDeploy库依赖
|
||||
target_link_libraries(infer_demo ${FASTDEPLOY_LIBS})
|
106
examples/vision/classification/paddleclas/cpu-gpu/cpp/README.md
Executable file
106
examples/vision/classification/paddleclas/cpu-gpu/cpp/README.md
Executable file
@@ -0,0 +1,106 @@
|
||||
# PaddleClas CPU-GPU C++部署示例
|
||||
|
||||
本目录下提供`infer.cc`快速完成PaddleClas系列模型在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
|
||||
|
||||
## 1. 说明
|
||||
PaddleClas支持利用FastDeploy在NVIDIA GPU、X86 CPU、飞腾CPU、ARM CPU、Intel GPU(独立显卡/集成显卡)硬件上快速部署图像分类模型.
|
||||
|
||||
## 2. 部署环境准备
|
||||
在部署前,需确认软硬件环境,同时下载预编译部署库,参考[FastDeploy安装文档](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install#FastDeploy预编译库安装)安装FastDeploy预编译库.
|
||||
|
||||
## 3. 部署模型准备
|
||||
在部署前, 请准备好您所需要运行的推理模型, 您可以在[FastDeploy支持的PaddleClas模型列表](../README.md)中下载所需模型.
|
||||
|
||||
## 4. 运行部署示例
|
||||
以Linux上推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本1.0.0以上(x.x.x>=1.0.0)
|
||||
|
||||
```bash
|
||||
# 下载部署示例代码
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd FastDeploy/examples/vision/classification/paddleclas/cpu-gpu/cpp
|
||||
|
||||
# 如果您希望从PaddleClas下载示例代码,请运行
|
||||
git clone https://github.com/PaddlePaddle/PaddleClas.git
|
||||
# 注意:如果当前分支找不到下面的fastdeploy测试代码,请切换到develop分支
|
||||
git checkout develop
|
||||
cd PaddleClas/deploy/fastdeploy/cpu-gpu/cpp
|
||||
|
||||
mkdir build
|
||||
cd build
|
||||
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
|
||||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
||||
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
||||
make -j
|
||||
|
||||
# 下载ResNet50_vd模型文件和测试图片
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
|
||||
tar -xvf ResNet50_vd_infer.tgz
|
||||
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
|
||||
|
||||
|
||||
# 在CPU上使用Paddle Inference推理
|
||||
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 0
|
||||
# 在CPU上使用OenVINO推理
|
||||
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 1
|
||||
# 在CPU上使用ONNX Runtime推理
|
||||
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 2
|
||||
# 在CPU上使用Paddle Lite推理
|
||||
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 3
|
||||
# 在GPU上使用Paddle Inference推理
|
||||
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 4
|
||||
# 在GPU上使用Paddle TensorRT推理
|
||||
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 5
|
||||
# 在GPU上使用ONNX Runtime推理
|
||||
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 6
|
||||
# 在GPU上使用Nvidia TensorRT推理
|
||||
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 7
|
||||
```
|
||||
运行完成后返回结果如下所示
|
||||
```bash
|
||||
ClassifyResult(
|
||||
label_ids: 153,
|
||||
scores: 0.686229,
|
||||
)
|
||||
```
|
||||
|
||||
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||||
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
|
||||
|
||||
|
||||
## 5. 部署示例选项说明
|
||||
在我们使用`infer_demo`时, 输入了3个参数, 分别为分类模型, 预测图片, 与最后一位的数字选项.
|
||||
现在下表将解释最后一位数字选项的含义.
|
||||
|数字选项|含义|
|
||||
|:---:|:---:|
|
||||
|0| 在CPU上使用Paddle Inference推理 |
|
||||
|1| 在CPU上使用OenVINO推理 |
|
||||
|2| 在CPU上使用ONNX Runtime推理 |
|
||||
|3| 在CPU上使用Paddle Lite推理 |
|
||||
|4| 在GPU上使用Paddle Inference推理 |
|
||||
|5| 在GPU上使用Paddle TensorRT推理 |
|
||||
|6| 在GPU上使用ONNX Runtime推理 |
|
||||
|7| 在GPU上使用Nvidia TensorRT推理 |
|
||||
|
||||
- 关于如何通过FastDeploy使用更多不同的推理后端,以及如何使用不同的硬件,请参考文档:[如何切换模型推理后端引擎](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/how_to_change_backend.md)
|
||||
|
||||
## 6. 更多指南
|
||||
- [PaddleClas系列 C++ API查阅](https://www.paddlepaddle.org.cn/fastdeploy-api-doc/cpp/html/namespacefastdeploy_1_1vision_1_1classification.html)
|
||||
- [PaddleClas Python部署](../python)
|
||||
- [PaddleClas C 部署](../c)
|
||||
- [PaddleClas C# 部署](../csharp)
|
||||
|
||||
## 7. 常见问题
|
||||
- PaddleClas能在FastDeploy支持的多种后端上推理,支持情况如下表所示, 如何切换后端, 详见文档[如何切换模型推理后端引擎](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/how_to_change_backend.md)
|
||||
|
||||
|硬件类型|支持的后端|
|
||||
|:---:|:---:|
|
||||
|X86 CPU| Paddle Inference, ONNX Runtime, OpenVINO |
|
||||
|ARM CPU| Paddle Lite |
|
||||
|飞腾 CPU| ONNX Runtime |
|
||||
|NVIDIA GPU| Paddle Inference, ONNX Runtime, TensorRT |
|
||||
|
||||
- [Intel GPU(独立显卡/集成显卡)的使用](https://github.com/PaddlePaddle/FastDeploy/blob/develop/tutorials/intel_gpu/README.md)
|
||||
- [编译CPU部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/cpu.md)
|
||||
- [编译GPU部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/gpu.md)
|
||||
- [编译Jetson部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/jetson.md)
|
@@ -0,0 +1,88 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision.h"
|
||||
#ifdef WIN32
|
||||
const char sep = '\\';
|
||||
#else
|
||||
const char sep = '/';
|
||||
#endif
|
||||
|
||||
void InitAndInfer(const std::string &model_dir, const std::string &image_file,
|
||||
const fastdeploy::RuntimeOption &option) {
|
||||
auto model_file = model_dir + sep + "inference.pdmodel";
|
||||
auto params_file = model_dir + sep + "inference.pdiparams";
|
||||
auto config_file = model_dir + sep + "inference_cls.yaml";
|
||||
|
||||
auto model = fastdeploy::vision::classification::PaddleClasModel(
|
||||
model_file, params_file, config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::ClassifyResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
// print res
|
||||
std::cout << res.Str() << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
if (argc < 4) {
|
||||
std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
|
||||
"e.g ./infer_demo ./ResNet50_vd ./test.jpeg 0"
|
||||
<< std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
fastdeploy::RuntimeOption option;
|
||||
int flag = std::atoi(argv[3]);
|
||||
|
||||
if (flag == 0) {
|
||||
option.UseCpu();
|
||||
option.UsePaddleBackend(); // Paddle Inference
|
||||
} else if (flag == 1) {
|
||||
option.UseCpu();
|
||||
option.UseOpenVINOBackend(); // OpenVINO
|
||||
} else if (flag == 2) {
|
||||
option.UseCpu();
|
||||
option.UseOrtBackend(); // ONNX Runtime
|
||||
} else if (flag == 3) {
|
||||
option.UseCpu();
|
||||
option.UseLiteBackend(); // Paddle Lite
|
||||
} else if (flag == 4) {
|
||||
option.UseGpu();
|
||||
option.UsePaddleBackend(); // Paddle Inference
|
||||
} else if (flag == 5) {
|
||||
option.UseGpu();
|
||||
option.UsePaddleInferBackend();
|
||||
option.paddle_infer_option.enable_trt = true;
|
||||
} else if (flag == 6) {
|
||||
option.UseGpu();
|
||||
option.UseOrtBackend(); // ONNX Runtime
|
||||
} else if (flag == 7) {
|
||||
option.UseGpu();
|
||||
option.UseTrtBackend(); // TensorRT
|
||||
}
|
||||
|
||||
std::string model_dir = argv[1];
|
||||
std::string image_dir = argv[2];
|
||||
InitAndInfer(model_dir, image_dir, option);
|
||||
}
|
Reference in New Issue
Block a user