[Docs] Pick paddleclas fastdeploy docs from PaddleClas (#1654)

* Adjust folders structures in paddleclas

* remove useless files

* Update sophgo

* improve readme
This commit is contained in:
yunyaoXYY
2023-03-23 13:06:09 +08:00
committed by GitHub
parent ab65557121
commit c91e99b5f5
90 changed files with 2005 additions and 2584 deletions

View File

@@ -0,0 +1,44 @@
# PaddleClas 昇腾 Python部署示例
本目录下提供`infer.py`快速完成PaddleClas在昇腾AI处理器上部署的示例.
## 1. 部署环境准备
在部署前需自行编译基于昇腾AI处理器的FastDeploy python wheel包并安装参考文档参考文档[昇腾AI处理器部署环境编译](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install#自行编译安装)
## 2. 部署模型准备
在部署前, 请准备好您所需要运行的推理模型, 您可以在[FastDeploy支持的PaddleClas模型列表](../README.md)中下载所需模型.
## 3. 运行部署示例
```bash
# 安装FastDpeloy 昇腾预测库 python包详细文档请参考`部署环境准备`
# 下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/classification/paddleclas/ascend/python
# 如果您希望从PaddleClas下载示例代码请运行
git clone https://github.com/PaddlePaddle/PaddleClas.git
# 注意如果当前分支找不到下面的fastdeploy测试代码请切换到develop分支
git checkout develop
cd PaddleClas/deploy/fastdeploy/ascend/python
# 下载ResNet50_vd模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
tar -xvf ResNet50_vd_infer.tgz
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
# 在Ascend AI 处理器上推理
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --topk 1
```
运行完成后返回结果如下所示
```bash
ClassifyResult(
label_ids: 153,
scores: 0.686229,
)
```
## 4. 更多指南
- [PaddleClas系列 Python API查阅](https://www.paddlepaddle.org.cn/fastdeploy-api-doc/python/html/image_classification.html)
- [FastDeploy部署PaddleClas模型概览](../../)
- [PaddleClas C++ 部署](../cpp)

View File

@@ -0,0 +1,41 @@
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model", required=True, help="Path of PaddleClas model.")
parser.add_argument(
"--image", type=str, required=True, help="Path of test image file.")
parser.add_argument(
"--topk", type=int, default=1, help="Return topk results.")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
option.use_ascend()
return option
args = parse_arguments()
# 配置runtime加载模型
runtime_option = build_option(args)
model_file = os.path.join(args.model, "inference.pdmodel")
params_file = os.path.join(args.model, "inference.pdiparams")
config_file = os.path.join(args.model, "inference_cls.yaml")
model = fd.vision.classification.PaddleClasModel(
model_file, params_file, config_file, runtime_option=runtime_option)
# 预测图片分类结果
im = cv2.imread(args.image)
result = model.predict(im, args.topk)
print(result)