[Runtime] Add Poros Backend Runtime demo for c++/python (#915)

* add onnx_ort_runtime demo

* rm in requirements

* support batch eval

* fixed MattingResults bug

* move assignment for DetectionResult

* integrated x2paddle

* add model convert readme

* update readme

* re-lint

* add processor api

* Add MattingResult Free

* change valid_cpu_backends order

* add ppocr benchmark

* mv bs from 64 to 32

* fixed quantize.md

* fixed quantize bugs

* Add Monitor for benchmark

* update mem monitor

* Set trt_max_batch_size default 1

* fixed ocr benchmark bug

* support yolov5 in serving

* Fixed yolov5 serving

* Fixed postprocess

* update yolov5 to 7.0

* add poros runtime demos

* update readme

* Support poros abi=1

* rm useless note

* deal with comments

Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
WJJ1995
2022-12-20 19:03:14 +08:00
committed by GitHub
parent 37e992fca7
commit c8db4b442a
7 changed files with 203 additions and 20 deletions

View File

@@ -0,0 +1,62 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from fastdeploy import ModelFormat
import fastdeploy as fd
import numpy as np
def load_example_input_datas():
"""prewarm datas"""
data_list = []
# max size
input_1 = np.ones((1, 3, 224, 224), dtype=np.float32)
max_inputs = [input_1]
data_list.append(tuple(max_inputs))
# min size
input_1 = np.ones((1, 3, 224, 224), dtype=np.float32)
min_inputs = [input_1]
data_list.append(tuple(min_inputs))
# opt size
input_1 = np.ones((1, 3, 224, 224), dtype=np.float32)
opt_inputs = [input_1]
data_list.append(tuple(opt_inputs))
return data_list
if __name__ == '__main__':
# prewarm_datas
prewarm_datas = load_example_input_datas()
# download model
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/std_resnet50_script.pt"
fd.download(model_url, path=".")
option = fd.RuntimeOption()
option.use_gpu(0)
option.use_poros_backend()
option.set_model_path(
"std_resnet50_script.pt", model_format=ModelFormat.TORCHSCRIPT)
option.is_dynamic = True
# compile
runtime = fd.Runtime(option)
runtime.compile(prewarm_datas)
# infer
input_data_0 = np.random.rand(1, 3, 224, 224).astype("float32")
result = runtime.forward(input_data_0)
print(result[0].shape)