[Doc] Add docs for ppocr ppseg examples (#1429)

* add docs for examples

* add english doc

* fix

* fix docs
This commit is contained in:
chenjian
2023-02-28 20:13:01 +08:00
committed by GitHub
parent 010f12db3d
commit c8bcada1a2
22 changed files with 2983 additions and 5 deletions

View File

@@ -0,0 +1,102 @@
[English](README.md) | 简体中文
# PaddleSeg C#部署示例
本目录下提供`infer.cs`来调用C# API快速完成PaddleSeg模型在CPU/GPU上部署的示例。
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境下载预编译部署库和samples代码参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
在本目录执行如下命令即可在Windows完成编译测试支持此模型需保证FastDeploy版本1.0.4以上(x.x.x>=1.0.4)
## 1. 下载C#包管理程序nuget客户端
> https://dist.nuget.org/win-x86-commandline/v6.4.0/nuget.exe
下载完成后将该程序添加到环境变量**PATH**中
## 2. 下载模型文件和测试图片
> https://bj.bcebos.com/paddlehub/fastdeploy/PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer.tgz # (下载后解压缩)
> https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
## 3. 编译示例代码
本文档编译的示例代码可在解压的库中找到编译工具依赖VS 2019的安装**Windows打开x64 Native Tools Command Prompt for VS 2019命令工具**,通过如下命令开始编译
```shell
cd D:\Download\fastdeploy-win-x64-gpu-x.x.x\examples\vision\segmentation\paddleseg\cpu-gpu\csharp
mkdir build && cd build
cmake .. -G "Visual Studio 16 2019" -A x64 -DFASTDEPLOY_INSTALL_DIR=D:\Download\fastdeploy-win-x64-gpu-x.x.x -DCUDA_DIRECTORY="C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.2"
nuget restore
msbuild infer_demo.sln /m:4 /p:Configuration=Release /p:Platform=x64
```
关于使用Visual Studio 2019创建sln工程或者CMake工程等方式编译的更详细信息可参考如下文档
- [在 Windows 使用 FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
- [FastDeploy C++库在Windows上的多种使用方式](../../../../../docs/cn/faq/use_sdk_on_windows_build.md)
## 4. 运行可执行程序
注意Windows上运行时需要将FastDeploy依赖的库拷贝至可执行程序所在目录, 或者配置环境变量。FastDeploy提供了工具帮助我们快速将所有依赖库拷贝至可执行程序所在目录,通过如下命令将所有依赖的dll文件拷贝至可执行程序所在的目录(可能生成的可执行文件在Release下还有一层目录这里假设生成的可执行文件在Release处)
```shell
cd D:\Download\fastdeploy-win-x64-gpu-x.x.x
fastdeploy_init.bat install %cd% D:\Download\fastdeploy-win-x64-gpu-x.x.x\examples\vision\segmentation\paddleseg\cpu-gpu\csharp\build\Release
```
将dll拷贝到当前路径后准备好模型和图片使用如下命令运行可执行程序即可
```shell
cd Release
# CPU推理
infer_demo PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer cityscapes_demo.png 0
# GPU推理
infer_demo PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer cityscapes_demo.png 1
```
## PaddleSeg C#接口
### 模型
```c#
fastdeploy.vision.segmentation.PaddleSeg(
string model_file,
string params_file,
string config_file,
fastdeploy.RuntimeOption runtime_option = null,
fastdeploy.ModelFormat model_format = ModelFormat.PADDLE)
```
> PaddleSeg模型加载和初始化。
> **参数**
>> * **model_file**(str): 模型文件路径
>> * **params_file**(str): 参数文件路径
>> * **config_file**(str): 配置文件路径
>> * **runtime_option**(RuntimeOption): 后端推理配置默认为null即采用默认配置
>> * **model_format**(ModelFormat): 模型格式默认为PADDLE格式
#### Predict函数
```c#
fastdeploy.SegmentationResult Predict(OpenCvSharp.Mat im)
```
> 模型预测接口,输入图像直接输出结果。
>
> **参数**
>
>> * **im**(Mat): 输入图像注意需为HWCBGR格式
>>
> **返回值**
>
>> * **result**: Segmentation检测结果SegmentationResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
- [模型介绍](../../)
- [Python部署](../python)
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)