mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-12 20:11:20 +08:00
[Doc] Add docs for ppocr ppseg examples (#1429)
* add docs for examples * add english doc * fix * fix docs
This commit is contained in:
104
examples/vision/segmentation/paddleseg/cpu-gpu/csharp/README.md
Executable file
104
examples/vision/segmentation/paddleseg/cpu-gpu/csharp/README.md
Executable file
@@ -0,0 +1,104 @@
|
||||
English | [简体中文](README_CN.md)
|
||||
# PaddleSeg C# Deployment Example
|
||||
|
||||
This directory provides `infer.cs` to finish the deployment of PaddleSeg on CPU/GPU.
|
||||
|
||||
Before deployment, two steps require confirmation
|
||||
|
||||
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
Please follow below instructions to compile and test in Windows. FastDeploy version 1.0.4 or above (x.x.x>=1.0.4) is required to support this model.
|
||||
|
||||
## 1. Download C# package management tool nuget client
|
||||
> https://dist.nuget.org/win-x86-commandline/v6.4.0/nuget.exe
|
||||
|
||||
Add nuget program into system variable **PATH**
|
||||
|
||||
## 2. Download model and image for test
|
||||
> https://bj.bcebos.com/paddlehub/fastdeploy/PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer.tgz # (Decompress it)
|
||||
> https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
|
||||
|
||||
|
||||
## 3. Compile example code
|
||||
|
||||
Open `x64 Native Tools Command Prompt for VS 2019` command tool on Windows, cd to the demo path of ppyoloe and execute commands
|
||||
|
||||
```shell
|
||||
cd D:\Download\fastdeploy-win-x64-gpu-x.x.x\examples\vision\segmentation\paddleseg\cpu-gpu\csharp
|
||||
|
||||
mkdir build && cd build
|
||||
cmake .. -G "Visual Studio 16 2019" -A x64 -DFASTDEPLOY_INSTALL_DIR=D:\Download\fastdeploy-win-x64-gpu-x.x.x -DCUDA_DIRECTORY="C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.2"
|
||||
|
||||
nuget restore
|
||||
msbuild infer_demo.sln /m:4 /p:Configuration=Release /p:Platform=x64
|
||||
```
|
||||
|
||||
For more information about how to use FastDeploy SDK to compile a project with Visual Studio 2019. Please refer to
|
||||
- [Using the FastDeploy C++ SDK on Windows Platform](../../../../../docs/en/faq/use_sdk_on_windows.md)
|
||||
|
||||
## 4. Execute compiled program
|
||||
|
||||
fastdeploy.dll and related dynamic libraries are required by the program. FastDeploy provide a script to copy all required dll to your program path.
|
||||
|
||||
```shell
|
||||
cd D:\Download\fastdeploy-win-x64-gpu-x.x.x
|
||||
|
||||
fastdeploy_init.bat install %cd% D:\Download\fastdeploy-win-x64-gpu-x.x.x\examples\vision\segmentation\paddleseg\cpu-gpu\csharp\build\Release
|
||||
```
|
||||
|
||||
Then you can run your program and test the model with image
|
||||
```shell
|
||||
cd Release
|
||||
# CPU inference
|
||||
infer_demo PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer cityscapes_demo.png 0
|
||||
# GPU inference
|
||||
infer_demo PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer cityscapes_demo.png 1
|
||||
```
|
||||
|
||||
## PaddleSeg C# Interface
|
||||
|
||||
### Model Class
|
||||
|
||||
```c#
|
||||
fastdeploy.vision.segmentation.PaddleSeg(
|
||||
string model_file,
|
||||
string params_file,
|
||||
string config_file,
|
||||
fastdeploy.RuntimeOption runtime_option = null,
|
||||
fastdeploy.ModelFormat model_format = ModelFormat.PADDLE)
|
||||
```
|
||||
|
||||
> PaddleSeg initialization
|
||||
|
||||
> **Params**
|
||||
|
||||
>> * **model_file**(str): Model file path
|
||||
>> * **params_file**(str): Parameter file path
|
||||
>> * **config_file**(str): Config file path
|
||||
>> * **runtime_option**(RuntimeOption): Backend inference configuration. null by default, which is the default configuration
|
||||
>> * **model_format**(ModelFormat): Model format.
|
||||
|
||||
#### Predict Function
|
||||
|
||||
```c#
|
||||
fastdeploy.SegmentationResult Predict(OpenCvSharp.Mat im)
|
||||
```
|
||||
|
||||
> Model prediction interface. Input images and output results directly.
|
||||
>
|
||||
> **Params**
|
||||
>
|
||||
>> * **im**(Mat): Input images in HWC or BGR format
|
||||
>>
|
||||
> **Return**
|
||||
>
|
||||
>> * **result**: Segmentation prediction results, refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for SegmentationResult
|
||||
|
||||
|
||||
## Other Documents
|
||||
|
||||
- [PPSegmentation Model Description](../../)
|
||||
- [PaddleSeg Python Deployment](../python)
|
||||
- [Model Prediction Results](../../../../../docs/api/vision_results/)
|
||||
- [How to switch the model inference backend engine](../../../../../docs/cn/faq/how_to_change_backend.md)
|
@@ -0,0 +1,102 @@
|
||||
[English](README.md) | 简体中文
|
||||
# PaddleSeg C#部署示例
|
||||
|
||||
本目录下提供`infer.cs`来调用C# API快速完成PaddleSeg模型在CPU/GPU上部署的示例。
|
||||
|
||||
在部署前,需确认以下两个步骤
|
||||
|
||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
在本目录执行如下命令即可在Windows完成编译测试,支持此模型需保证FastDeploy版本1.0.4以上(x.x.x>=1.0.4)
|
||||
|
||||
## 1. 下载C#包管理程序nuget客户端
|
||||
> https://dist.nuget.org/win-x86-commandline/v6.4.0/nuget.exe
|
||||
|
||||
下载完成后将该程序添加到环境变量**PATH**中
|
||||
|
||||
## 2. 下载模型文件和测试图片
|
||||
> https://bj.bcebos.com/paddlehub/fastdeploy/PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer.tgz # (下载后解压缩)
|
||||
> https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
|
||||
|
||||
|
||||
## 3. 编译示例代码
|
||||
|
||||
本文档编译的示例代码可在解压的库中找到,编译工具依赖VS 2019的安装,**Windows打开x64 Native Tools Command Prompt for VS 2019命令工具**,通过如下命令开始编译
|
||||
|
||||
```shell
|
||||
cd D:\Download\fastdeploy-win-x64-gpu-x.x.x\examples\vision\segmentation\paddleseg\cpu-gpu\csharp
|
||||
|
||||
mkdir build && cd build
|
||||
cmake .. -G "Visual Studio 16 2019" -A x64 -DFASTDEPLOY_INSTALL_DIR=D:\Download\fastdeploy-win-x64-gpu-x.x.x -DCUDA_DIRECTORY="C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.2"
|
||||
|
||||
nuget restore
|
||||
msbuild infer_demo.sln /m:4 /p:Configuration=Release /p:Platform=x64
|
||||
```
|
||||
|
||||
关于使用Visual Studio 2019创建sln工程,或者CMake工程等方式编译的更详细信息,可参考如下文档
|
||||
- [在 Windows 使用 FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
|
||||
- [FastDeploy C++库在Windows上的多种使用方式](../../../../../docs/cn/faq/use_sdk_on_windows_build.md)
|
||||
|
||||
## 4. 运行可执行程序
|
||||
|
||||
注意Windows上运行时,需要将FastDeploy依赖的库拷贝至可执行程序所在目录, 或者配置环境变量。FastDeploy提供了工具帮助我们快速将所有依赖库拷贝至可执行程序所在目录,通过如下命令将所有依赖的dll文件拷贝至可执行程序所在的目录(可能生成的可执行文件在Release下还有一层目录,这里假设生成的可执行文件在Release处)
|
||||
```shell
|
||||
cd D:\Download\fastdeploy-win-x64-gpu-x.x.x
|
||||
|
||||
fastdeploy_init.bat install %cd% D:\Download\fastdeploy-win-x64-gpu-x.x.x\examples\vision\segmentation\paddleseg\cpu-gpu\csharp\build\Release
|
||||
```
|
||||
|
||||
将dll拷贝到当前路径后,准备好模型和图片,使用如下命令运行可执行程序即可
|
||||
```shell
|
||||
cd Release
|
||||
# CPU推理
|
||||
infer_demo PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer cityscapes_demo.png 0
|
||||
# GPU推理
|
||||
infer_demo PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer cityscapes_demo.png 1
|
||||
```
|
||||
|
||||
## PaddleSeg C#接口
|
||||
|
||||
### 模型
|
||||
|
||||
```c#
|
||||
fastdeploy.vision.segmentation.PaddleSeg(
|
||||
string model_file,
|
||||
string params_file,
|
||||
string config_file,
|
||||
fastdeploy.RuntimeOption runtime_option = null,
|
||||
fastdeploy.ModelFormat model_format = ModelFormat.PADDLE)
|
||||
```
|
||||
|
||||
> PaddleSeg模型加载和初始化。
|
||||
|
||||
> **参数**
|
||||
|
||||
>> * **model_file**(str): 模型文件路径
|
||||
>> * **params_file**(str): 参数文件路径
|
||||
>> * **config_file**(str): 配置文件路径
|
||||
>> * **runtime_option**(RuntimeOption): 后端推理配置,默认为null,即采用默认配置
|
||||
>> * **model_format**(ModelFormat): 模型格式,默认为PADDLE格式
|
||||
|
||||
#### Predict函数
|
||||
|
||||
```c#
|
||||
fastdeploy.SegmentationResult Predict(OpenCvSharp.Mat im)
|
||||
```
|
||||
|
||||
> 模型预测接口,输入图像直接输出结果。
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
>> * **im**(Mat): 输入图像,注意需为HWC,BGR格式
|
||||
>>
|
||||
> **返回值**
|
||||
>
|
||||
>> * **result**: Segmentation检测结果,SegmentationResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||||
|
||||
|
||||
- [模型介绍](../../)
|
||||
- [Python部署](../python)
|
||||
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||||
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
|
Reference in New Issue
Block a user