[Doc] Add docs for ppocr ppseg examples (#1429)

* add docs for examples

* add english doc

* fix

* fix docs
This commit is contained in:
chenjian
2023-02-28 20:13:01 +08:00
committed by GitHub
parent 010f12db3d
commit c8bcada1a2
22 changed files with 2983 additions and 5 deletions

View File

@@ -0,0 +1,184 @@
English | [简体中文](README_CN.md)
# PaddleSeg C Deployment Example
This directory provides `infer.c` to finish the deployment of PaddleSeg on CPU/GPU.
Before deployment, two steps require confirmation
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
- 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
Taking inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 1.0.4 or above (x.x.x>=1.0.4) is required to support this model.
```bash
mkdir build
cd build
# Download the FastDeploy precompiled library. Users can choose your appropriate version in the `FastDeploy Precompiled Library` mentioned above
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j
# Download model, image files
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer.tgz
tar -xvf PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer.tgz
wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
# CPU inference
./infer_demo PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer cityscapes_demo.png 0
# GPU inference
./infer_demo PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer cityscapes_demo.png 1
```
The above command works for Linux or MacOS. For SDK in Windows, refer to:
- [How to use FastDeploy C++ SDK in Windows](../../../../../docs/en/faq/use_sdk_on_windows.md)
The visualized result after running is as follows
<div align="center">
<img src="https://user-images.githubusercontent.com/16222477/191712880-91ae128d-247a-43e0-b1e3-cafae78431e0.jpg", width=512px, height=256px />
</div>
## PaddleSeg C Interface
### RuntimeOption
```c
FD_C_RuntimeOptionWrapper* FD_C_CreateRuntimeOptionWrapper()
```
> Create a RuntimeOption object, and return a pointer to manipulate it.
>
> **Return**
>
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): Pointer to manipulate RuntimeOption object.
```c
void FD_C_RuntimeOptionWrapperUseCpu(
FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper)
```
> Enable Cpu inference.
>
> **Params**
>
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): Pointer to manipulate RuntimeOption object.
```c
void FD_C_RuntimeOptionWrapperUseGpu(
FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper,
int gpu_id)
```
> Enable Gpu inference.
>
> **Params**
>
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): Pointer to manipulate RuntimeOption object.
> * **gpu_id**(int): gpu id
### Model
```c
FD_C_PaddleSegWrapper* FD_C_CreatePaddleSegWrapper(
const char* model_file, const char* params_file, const char* config_file,
FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper,
const FD_C_ModelFormat model_format
)
```
> Create a PaddleSeg model object, and return a pointer to manipulate it.
>
> **Params**
>
> * **model_file**(const char*): Model file path
> * **params_file**(const char*): Parameter file path
> * **config_file**(const char*): config file path
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): Backend inference configuration. None by default, which is the default configuration
> * **model_format**(FD_C_ModelFormat): Model format
>
> **Return**
>
> * **fd_c_ppseg_wrapper**(FD_C_PaddleSegWrapper*): Pointer to manipulate PaddleSeg object.
#### Read and write image
```c
FD_C_Mat FD_C_Imread(const char* imgpath)
```
> Read an image, and return a pointer to cv::Mat.
>
> **Params**
>
> * **imgpath**(const char*): image path
>
> **Return**
>
> * **imgmat**(FD_C_Mat): pointer to cv::Mat object which holds the image.
```c
FD_C_Bool FD_C_Imwrite(const char* savepath, FD_C_Mat img);
```
> Write image to a file.
>
> **Params**
>
> * **savepath**(const char*): save path
> * **img**(FD_C_Mat): pointer to cv::Mat object
>
> **Return**
>
> * **result**(FD_C_Bool): bool to indicate success or failure
#### Prediction
```c
FD_C_Bool FD_C_PaddleSegWrapperPredict(
FD_C_PaddleSegWrapper* fd_c_ppseg_wrapper,
FD_C_Mat img,
FD_C_SegmentationResult* result)
```
>
> Predict an image, and generate result.
>
> **Params**
> * **fd_c_ppseg_wrapper**(FD_C_PaddleSegWrapper*): Pointer to manipulate PaddleSeg object.
> * **img**FD_C_Mat: pointer to cv::Mat object, which can be obained by FD_C_Imread interface
> * **result**(FD_C_SegmentationResult*): Segmentation prediction results, Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for SegmentationResult
#### Result
```c
FD_C_Mat FD_C_VisSegmentation(FD_C_Mat im,
FD_C_SegmentationResult* result,
float weight)
```
>
> Visualize segmentation results and return visualization image.
>
> **Params**
> * **im**(FD_C_Mat): pointer to input image
> * **segmentation_result**(FD_C_SegmentationResult*): pointer to C FD_C_SegmentationResult structure
> * **weight**(float): weight transparent weight of visualized result image
>
> **Return**
> * **vis_im**(FD_C_Mat): pointer to visualization image.
## Other Documents
- [PPSegmentation Model Description](../../)
- [PaddleSeg Python Deployment](../python)
- [Model Prediction Results](../../../../../docs/api/vision_results/)
- [How to switch the model inference backend engine](../../../../../docs/cn/faq/how_to_change_backend.md)

View File

@@ -0,0 +1,185 @@
[English](README.md) | 简体中文
# PaddleSeg C部署示例
本目录下提供`infer.c`来调用C API快速完成PaddleSeg模型在CPU/GPU上部署的示例。
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境下载预编译部署库和samples代码参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
以Linux上推理为例在本目录执行如下命令即可完成编译测试支持此模型需保证FastDeploy版本1.0.4以上(x.x.x>=1.0.4)
```bash
mkdir build
cd build
# 下载FastDeploy预编译库用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j
# 下载PP-LiteSeg模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer.tgz
tar -xvf PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer.tgz
wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
# CPU推理
./infer_demo PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer cityscapes_demo.png 0
# GPU推理
./infer_demo PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer cityscapes_demo.png 1
```
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
如果用户使用华为昇腾NPU部署, 请参考以下方式在部署前初始化部署环境:
- [如何使用华为昇腾NPU部署](../../../../../docs/cn/faq/use_sdk_on_ascend.md)
运行完成可视化结果如下图所示
<div align="center">
<img src="https://user-images.githubusercontent.com/16222477/191712880-91ae128d-247a-43e0-b1e3-cafae78431e0.jpg", width=512px, height=256px />
</div>
## PaddleSeg C API接口
### 配置
```c
FD_C_RuntimeOptionWrapper* FD_C_CreateRuntimeOptionWrapper()
```
> 创建一个RuntimeOption的配置对象并且返回操作它的指针。
>
> **返回**
>
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): 指向RuntimeOption对象的指针
```c
void FD_C_RuntimeOptionWrapperUseCpu(
FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper)
```
> 开启CPU推理
>
> **参数**
>
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): 指向RuntimeOption对象的指针
```c
void FD_C_RuntimeOptionWrapperUseGpu(
FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper,
int gpu_id)
```
> 开启GPU推理
>
> **参数**
>
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): 指向RuntimeOption对象的指针
> * **gpu_id**(int): 显卡号
### 模型
```c
FD_C_PaddleSegWrapper* FD_C_CreatePaddleSegWrapper(
const char* model_file, const char* params_file, const char* config_file,
FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper,
const FD_C_ModelFormat model_format
)
```
> 创建一个PaddleSeg的模型并且返回操作它的指针。
>
> **参数**
>
> * **model_file**(const char*): 模型文件路径
> * **params_file**(const char*): 参数文件路径
> * **config_file**(const char*): 配置文件路径
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): 指向RuntimeOption的指针表示后端推理配置
> * **model_format**(FD_C_ModelFormat): 模型格式
>
> **返回**
>
> * **fd_c_ppseg_wrapper**(FD_C_PaddleSegWrapper*): 指向PaddleSeg模型对象的指针
#### 读写图像
```c
FD_C_Mat FD_C_Imread(const char* imgpath)
```
> 读取一个图像并且返回cv::Mat的指针。
>
> **参数**
>
> * **imgpath**(const char*): 图像文件路径
>
> **返回**
>
> * **imgmat**(FD_C_Mat): 指向图像数据cv::Mat的指针。
```c
FD_C_Bool FD_C_Imwrite(const char* savepath, FD_C_Mat img);
```
> 将图像写入文件中。
>
> **参数**
>
> * **savepath**(const char*): 保存图像的路径
> * **img**(FD_C_Mat): 指向图像数据的指针
>
> **返回**
>
> * **result**(FD_C_Bool): 表示操作是否成功
#### Predict函数
```c
FD_C_Bool FD_C_PaddleSegWrapperPredict(
FD_C_PaddleSegWrapper* fd_c_ppseg_wrapper,
FD_C_Mat img,
FD_C_SegmentationResult* result)
```
>
> 模型预测接口,输入图像直接并生成分类结果。
>
> **参数**
> * **fd_c_ppseg_wrapper**(FD_C_PaddleSegWrapper*): 指向PaddleSeg模型的指针
> * **img**FD_C_Mat: 输入图像的指针指向cv::Mat对象可以调用FD_C_Imread读取图像获取
> * **result**FD_C_SegmentationResult*): Segmentation检测结果SegmentationResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
#### Predict结果
```c
FD_C_Mat FD_C_VisSegmentation(FD_C_Mat im,
FD_C_SegmentationResult* result,
float weight)
```
>
> 对结果进行可视化,返回可视化的图像。
>
> **参数**
> * **im**(FD_C_Mat): 指向输入图像的指针
> * **segmentation_result**(FD_C_SegmentationResult*): 指向 FD_C_SegmentationResult结构的指针
> * **weight**(float): 透明度权重
>
> **返回**
> * **vis_im**(FD_C_Mat): 指向可视化图像的指针
## 其它文档
- [PPSegmentation 系列模型介绍](../../)
- [PaddleSeg Python部署](../python)
- [模型预测结果说明](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)

View File

@@ -0,0 +1,104 @@
English | [简体中文](README_CN.md)
# PaddleSeg C# Deployment Example
This directory provides `infer.cs` to finish the deployment of PaddleSeg on CPU/GPU.
Before deployment, two steps require confirmation
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
- 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
Please follow below instructions to compile and test in Windows. FastDeploy version 1.0.4 or above (x.x.x>=1.0.4) is required to support this model.
## 1. Download C# package management tool nuget client
> https://dist.nuget.org/win-x86-commandline/v6.4.0/nuget.exe
Add nuget program into system variable **PATH**
## 2. Download model and image for test
> https://bj.bcebos.com/paddlehub/fastdeploy/PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer.tgz # (Decompress it)
> https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
## 3. Compile example code
Open `x64 Native Tools Command Prompt for VS 2019` command tool on Windows, cd to the demo path of ppyoloe and execute commands
```shell
cd D:\Download\fastdeploy-win-x64-gpu-x.x.x\examples\vision\segmentation\paddleseg\cpu-gpu\csharp
mkdir build && cd build
cmake .. -G "Visual Studio 16 2019" -A x64 -DFASTDEPLOY_INSTALL_DIR=D:\Download\fastdeploy-win-x64-gpu-x.x.x -DCUDA_DIRECTORY="C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.2"
nuget restore
msbuild infer_demo.sln /m:4 /p:Configuration=Release /p:Platform=x64
```
For more information about how to use FastDeploy SDK to compile a project with Visual Studio 2019. Please refer to
- [Using the FastDeploy C++ SDK on Windows Platform](../../../../../docs/en/faq/use_sdk_on_windows.md)
## 4. Execute compiled program
fastdeploy.dll and related dynamic libraries are required by the program. FastDeploy provide a script to copy all required dll to your program path.
```shell
cd D:\Download\fastdeploy-win-x64-gpu-x.x.x
fastdeploy_init.bat install %cd% D:\Download\fastdeploy-win-x64-gpu-x.x.x\examples\vision\segmentation\paddleseg\cpu-gpu\csharp\build\Release
```
Then you can run your program and test the model with image
```shell
cd Release
# CPU inference
infer_demo PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer cityscapes_demo.png 0
# GPU inference
infer_demo PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer cityscapes_demo.png 1
```
## PaddleSeg C# Interface
### Model Class
```c#
fastdeploy.vision.segmentation.PaddleSeg(
string model_file,
string params_file,
string config_file,
fastdeploy.RuntimeOption runtime_option = null,
fastdeploy.ModelFormat model_format = ModelFormat.PADDLE)
```
> PaddleSeg initialization
> **Params**
>> * **model_file**(str): Model file path
>> * **params_file**(str): Parameter file path
>> * **config_file**(str): Config file path
>> * **runtime_option**(RuntimeOption): Backend inference configuration. null by default, which is the default configuration
>> * **model_format**(ModelFormat): Model format.
#### Predict Function
```c#
fastdeploy.SegmentationResult Predict(OpenCvSharp.Mat im)
```
> Model prediction interface. Input images and output results directly.
>
> **Params**
>
>> * **im**(Mat): Input images in HWC or BGR format
>>
> **Return**
>
>> * **result**: Segmentation prediction results, refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for SegmentationResult
## Other Documents
- [PPSegmentation Model Description](../../)
- [PaddleSeg Python Deployment](../python)
- [Model Prediction Results](../../../../../docs/api/vision_results/)
- [How to switch the model inference backend engine](../../../../../docs/cn/faq/how_to_change_backend.md)

View File

@@ -0,0 +1,102 @@
[English](README.md) | 简体中文
# PaddleSeg C#部署示例
本目录下提供`infer.cs`来调用C# API快速完成PaddleSeg模型在CPU/GPU上部署的示例。
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境下载预编译部署库和samples代码参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
在本目录执行如下命令即可在Windows完成编译测试支持此模型需保证FastDeploy版本1.0.4以上(x.x.x>=1.0.4)
## 1. 下载C#包管理程序nuget客户端
> https://dist.nuget.org/win-x86-commandline/v6.4.0/nuget.exe
下载完成后将该程序添加到环境变量**PATH**中
## 2. 下载模型文件和测试图片
> https://bj.bcebos.com/paddlehub/fastdeploy/PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer.tgz # (下载后解压缩)
> https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
## 3. 编译示例代码
本文档编译的示例代码可在解压的库中找到编译工具依赖VS 2019的安装**Windows打开x64 Native Tools Command Prompt for VS 2019命令工具**,通过如下命令开始编译
```shell
cd D:\Download\fastdeploy-win-x64-gpu-x.x.x\examples\vision\segmentation\paddleseg\cpu-gpu\csharp
mkdir build && cd build
cmake .. -G "Visual Studio 16 2019" -A x64 -DFASTDEPLOY_INSTALL_DIR=D:\Download\fastdeploy-win-x64-gpu-x.x.x -DCUDA_DIRECTORY="C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.2"
nuget restore
msbuild infer_demo.sln /m:4 /p:Configuration=Release /p:Platform=x64
```
关于使用Visual Studio 2019创建sln工程或者CMake工程等方式编译的更详细信息可参考如下文档
- [在 Windows 使用 FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
- [FastDeploy C++库在Windows上的多种使用方式](../../../../../docs/cn/faq/use_sdk_on_windows_build.md)
## 4. 运行可执行程序
注意Windows上运行时需要将FastDeploy依赖的库拷贝至可执行程序所在目录, 或者配置环境变量。FastDeploy提供了工具帮助我们快速将所有依赖库拷贝至可执行程序所在目录,通过如下命令将所有依赖的dll文件拷贝至可执行程序所在的目录(可能生成的可执行文件在Release下还有一层目录这里假设生成的可执行文件在Release处)
```shell
cd D:\Download\fastdeploy-win-x64-gpu-x.x.x
fastdeploy_init.bat install %cd% D:\Download\fastdeploy-win-x64-gpu-x.x.x\examples\vision\segmentation\paddleseg\cpu-gpu\csharp\build\Release
```
将dll拷贝到当前路径后准备好模型和图片使用如下命令运行可执行程序即可
```shell
cd Release
# CPU推理
infer_demo PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer cityscapes_demo.png 0
# GPU推理
infer_demo PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer cityscapes_demo.png 1
```
## PaddleSeg C#接口
### 模型
```c#
fastdeploy.vision.segmentation.PaddleSeg(
string model_file,
string params_file,
string config_file,
fastdeploy.RuntimeOption runtime_option = null,
fastdeploy.ModelFormat model_format = ModelFormat.PADDLE)
```
> PaddleSeg模型加载和初始化。
> **参数**
>> * **model_file**(str): 模型文件路径
>> * **params_file**(str): 参数文件路径
>> * **config_file**(str): 配置文件路径
>> * **runtime_option**(RuntimeOption): 后端推理配置默认为null即采用默认配置
>> * **model_format**(ModelFormat): 模型格式默认为PADDLE格式
#### Predict函数
```c#
fastdeploy.SegmentationResult Predict(OpenCvSharp.Mat im)
```
> 模型预测接口,输入图像直接输出结果。
>
> **参数**
>
>> * **im**(Mat): 输入图像注意需为HWCBGR格式
>>
> **返回值**
>
>> * **result**: Segmentation检测结果SegmentationResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
- [模型介绍](../../)
- [Python部署](../python)
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)