mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00
[Doc] Add docs for ppocr ppseg examples (#1429)
* add docs for examples * add english doc * fix * fix docs
This commit is contained in:
184
examples/vision/segmentation/paddleseg/cpu-gpu/c/README.md
Executable file
184
examples/vision/segmentation/paddleseg/cpu-gpu/c/README.md
Executable file
@@ -0,0 +1,184 @@
|
||||
English | [简体中文](README_CN.md)
|
||||
# PaddleSeg C Deployment Example
|
||||
|
||||
This directory provides `infer.c` to finish the deployment of PaddleSeg on CPU/GPU.
|
||||
|
||||
Before deployment, two steps require confirmation
|
||||
|
||||
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
Taking inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 1.0.4 or above (x.x.x>=1.0.4) is required to support this model.
|
||||
|
||||
```bash
|
||||
mkdir build
|
||||
cd build
|
||||
# Download the FastDeploy precompiled library. Users can choose your appropriate version in the `FastDeploy Precompiled Library` mentioned above
|
||||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
||||
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
||||
make -j
|
||||
|
||||
# Download model, image files
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer.tgz
|
||||
tar -xvf PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer.tgz
|
||||
wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
|
||||
|
||||
|
||||
# CPU inference
|
||||
./infer_demo PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer cityscapes_demo.png 0
|
||||
# GPU inference
|
||||
./infer_demo PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer cityscapes_demo.png 1
|
||||
```
|
||||
|
||||
The above command works for Linux or MacOS. For SDK in Windows, refer to:
|
||||
- [How to use FastDeploy C++ SDK in Windows](../../../../../docs/en/faq/use_sdk_on_windows.md)
|
||||
|
||||
The visualized result after running is as follows
|
||||
|
||||
<div align="center">
|
||||
<img src="https://user-images.githubusercontent.com/16222477/191712880-91ae128d-247a-43e0-b1e3-cafae78431e0.jpg", width=512px, height=256px />
|
||||
</div>
|
||||
|
||||
|
||||
## PaddleSeg C Interface
|
||||
|
||||
### RuntimeOption
|
||||
|
||||
```c
|
||||
FD_C_RuntimeOptionWrapper* FD_C_CreateRuntimeOptionWrapper()
|
||||
```
|
||||
|
||||
> Create a RuntimeOption object, and return a pointer to manipulate it.
|
||||
>
|
||||
> **Return**
|
||||
>
|
||||
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): Pointer to manipulate RuntimeOption object.
|
||||
|
||||
|
||||
```c
|
||||
void FD_C_RuntimeOptionWrapperUseCpu(
|
||||
FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper)
|
||||
```
|
||||
|
||||
> Enable Cpu inference.
|
||||
>
|
||||
> **Params**
|
||||
>
|
||||
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): Pointer to manipulate RuntimeOption object.
|
||||
|
||||
```c
|
||||
void FD_C_RuntimeOptionWrapperUseGpu(
|
||||
FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper,
|
||||
int gpu_id)
|
||||
```
|
||||
> Enable Gpu inference.
|
||||
>
|
||||
> **Params**
|
||||
>
|
||||
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): Pointer to manipulate RuntimeOption object.
|
||||
|
||||
> * **gpu_id**(int): gpu id
|
||||
|
||||
|
||||
### Model
|
||||
|
||||
```c
|
||||
FD_C_PaddleSegWrapper* FD_C_CreatePaddleSegWrapper(
|
||||
const char* model_file, const char* params_file, const char* config_file,
|
||||
FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper,
|
||||
const FD_C_ModelFormat model_format
|
||||
)
|
||||
```
|
||||
|
||||
> Create a PaddleSeg model object, and return a pointer to manipulate it.
|
||||
>
|
||||
> **Params**
|
||||
>
|
||||
> * **model_file**(const char*): Model file path
|
||||
> * **params_file**(const char*): Parameter file path
|
||||
> * **config_file**(const char*): config file path
|
||||
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): Backend inference configuration. None by default, which is the default configuration
|
||||
> * **model_format**(FD_C_ModelFormat): Model format
|
||||
>
|
||||
> **Return**
|
||||
>
|
||||
> * **fd_c_ppseg_wrapper**(FD_C_PaddleSegWrapper*): Pointer to manipulate PaddleSeg object.
|
||||
|
||||
|
||||
|
||||
#### Read and write image
|
||||
|
||||
```c
|
||||
FD_C_Mat FD_C_Imread(const char* imgpath)
|
||||
```
|
||||
|
||||
> Read an image, and return a pointer to cv::Mat.
|
||||
>
|
||||
> **Params**
|
||||
>
|
||||
> * **imgpath**(const char*): image path
|
||||
>
|
||||
> **Return**
|
||||
>
|
||||
> * **imgmat**(FD_C_Mat): pointer to cv::Mat object which holds the image.
|
||||
|
||||
|
||||
```c
|
||||
FD_C_Bool FD_C_Imwrite(const char* savepath, FD_C_Mat img);
|
||||
```
|
||||
|
||||
> Write image to a file.
|
||||
>
|
||||
> **Params**
|
||||
>
|
||||
> * **savepath**(const char*): save path
|
||||
> * **img**(FD_C_Mat): pointer to cv::Mat object
|
||||
>
|
||||
> **Return**
|
||||
>
|
||||
> * **result**(FD_C_Bool): bool to indicate success or failure
|
||||
|
||||
|
||||
#### Prediction
|
||||
|
||||
```c
|
||||
FD_C_Bool FD_C_PaddleSegWrapperPredict(
|
||||
FD_C_PaddleSegWrapper* fd_c_ppseg_wrapper,
|
||||
FD_C_Mat img,
|
||||
FD_C_SegmentationResult* result)
|
||||
```
|
||||
>
|
||||
> Predict an image, and generate result.
|
||||
>
|
||||
> **Params**
|
||||
> * **fd_c_ppseg_wrapper**(FD_C_PaddleSegWrapper*): Pointer to manipulate PaddleSeg object.
|
||||
> * **img**(FD_C_Mat): pointer to cv::Mat object, which can be obained by FD_C_Imread interface
|
||||
> * **result**(FD_C_SegmentationResult*): Segmentation prediction results, Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for SegmentationResult
|
||||
|
||||
|
||||
#### Result
|
||||
|
||||
```c
|
||||
FD_C_Mat FD_C_VisSegmentation(FD_C_Mat im,
|
||||
FD_C_SegmentationResult* result,
|
||||
float weight)
|
||||
```
|
||||
>
|
||||
> Visualize segmentation results and return visualization image.
|
||||
>
|
||||
> **Params**
|
||||
> * **im**(FD_C_Mat): pointer to input image
|
||||
> * **segmentation_result**(FD_C_SegmentationResult*): pointer to C FD_C_SegmentationResult structure
|
||||
> * **weight**(float): weight transparent weight of visualized result image
|
||||
>
|
||||
> **Return**
|
||||
> * **vis_im**(FD_C_Mat): pointer to visualization image.
|
||||
|
||||
|
||||
## Other Documents
|
||||
|
||||
- [PPSegmentation Model Description](../../)
|
||||
- [PaddleSeg Python Deployment](../python)
|
||||
- [Model Prediction Results](../../../../../docs/api/vision_results/)
|
||||
- [How to switch the model inference backend engine](../../../../../docs/cn/faq/how_to_change_backend.md)
|
185
examples/vision/segmentation/paddleseg/cpu-gpu/c/README_CN.md
Normal file
185
examples/vision/segmentation/paddleseg/cpu-gpu/c/README_CN.md
Normal file
@@ -0,0 +1,185 @@
|
||||
[English](README.md) | 简体中文
|
||||
# PaddleSeg C部署示例
|
||||
|
||||
本目录下提供`infer.c`来调用C API快速完成PaddleSeg模型在CPU/GPU上部署的示例。
|
||||
|
||||
在部署前,需确认以下两个步骤
|
||||
|
||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
以Linux上推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本1.0.4以上(x.x.x>=1.0.4)
|
||||
|
||||
```bash
|
||||
mkdir build
|
||||
cd build
|
||||
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
|
||||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
||||
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
||||
make -j
|
||||
|
||||
# 下载PP-LiteSeg模型文件和测试图片
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer.tgz
|
||||
tar -xvf PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer.tgz
|
||||
wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
|
||||
|
||||
|
||||
# CPU推理
|
||||
./infer_demo PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer cityscapes_demo.png 0
|
||||
# GPU推理
|
||||
./infer_demo PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer cityscapes_demo.png 1
|
||||
```
|
||||
|
||||
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||||
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
|
||||
|
||||
如果用户使用华为昇腾NPU部署, 请参考以下方式在部署前初始化部署环境:
|
||||
- [如何使用华为昇腾NPU部署](../../../../../docs/cn/faq/use_sdk_on_ascend.md)
|
||||
|
||||
运行完成可视化结果如下图所示
|
||||
|
||||
<div align="center">
|
||||
<img src="https://user-images.githubusercontent.com/16222477/191712880-91ae128d-247a-43e0-b1e3-cafae78431e0.jpg", width=512px, height=256px />
|
||||
</div>
|
||||
|
||||
|
||||
## PaddleSeg C API接口
|
||||
|
||||
### 配置
|
||||
|
||||
```c
|
||||
FD_C_RuntimeOptionWrapper* FD_C_CreateRuntimeOptionWrapper()
|
||||
```
|
||||
|
||||
> 创建一个RuntimeOption的配置对象,并且返回操作它的指针。
|
||||
>
|
||||
> **返回**
|
||||
>
|
||||
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): 指向RuntimeOption对象的指针
|
||||
|
||||
|
||||
```c
|
||||
void FD_C_RuntimeOptionWrapperUseCpu(
|
||||
FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper)
|
||||
```
|
||||
|
||||
> 开启CPU推理
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): 指向RuntimeOption对象的指针
|
||||
|
||||
```c
|
||||
void FD_C_RuntimeOptionWrapperUseGpu(
|
||||
FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper,
|
||||
int gpu_id)
|
||||
```
|
||||
> 开启GPU推理
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): 指向RuntimeOption对象的指针
|
||||
> * **gpu_id**(int): 显卡号
|
||||
|
||||
|
||||
### 模型
|
||||
|
||||
```c
|
||||
FD_C_PaddleSegWrapper* FD_C_CreatePaddleSegWrapper(
|
||||
const char* model_file, const char* params_file, const char* config_file,
|
||||
FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper,
|
||||
const FD_C_ModelFormat model_format
|
||||
)
|
||||
```
|
||||
> 创建一个PaddleSeg的模型,并且返回操作它的指针。
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
> * **model_file**(const char*): 模型文件路径
|
||||
> * **params_file**(const char*): 参数文件路径
|
||||
> * **config_file**(const char*): 配置文件路径
|
||||
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): 指向RuntimeOption的指针,表示后端推理配置
|
||||
> * **model_format**(FD_C_ModelFormat): 模型格式
|
||||
>
|
||||
> **返回**
|
||||
>
|
||||
> * **fd_c_ppseg_wrapper**(FD_C_PaddleSegWrapper*): 指向PaddleSeg模型对象的指针
|
||||
|
||||
|
||||
|
||||
#### 读写图像
|
||||
|
||||
```c
|
||||
FD_C_Mat FD_C_Imread(const char* imgpath)
|
||||
```
|
||||
|
||||
> 读取一个图像,并且返回cv::Mat的指针。
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
> * **imgpath**(const char*): 图像文件路径
|
||||
>
|
||||
> **返回**
|
||||
>
|
||||
> * **imgmat**(FD_C_Mat): 指向图像数据cv::Mat的指针。
|
||||
|
||||
|
||||
```c
|
||||
FD_C_Bool FD_C_Imwrite(const char* savepath, FD_C_Mat img);
|
||||
```
|
||||
|
||||
> 将图像写入文件中。
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
> * **savepath**(const char*): 保存图像的路径
|
||||
> * **img**(FD_C_Mat): 指向图像数据的指针
|
||||
>
|
||||
> **返回**
|
||||
>
|
||||
> * **result**(FD_C_Bool): 表示操作是否成功
|
||||
|
||||
|
||||
#### Predict函数
|
||||
|
||||
```c
|
||||
FD_C_Bool FD_C_PaddleSegWrapperPredict(
|
||||
FD_C_PaddleSegWrapper* fd_c_ppseg_wrapper,
|
||||
FD_C_Mat img,
|
||||
FD_C_SegmentationResult* result)
|
||||
```
|
||||
>
|
||||
> 模型预测接口,输入图像直接并生成分类结果。
|
||||
>
|
||||
> **参数**
|
||||
> * **fd_c_ppseg_wrapper**(FD_C_PaddleSegWrapper*): 指向PaddleSeg模型的指针
|
||||
> * **img**(FD_C_Mat): 输入图像的指针,指向cv::Mat对象,可以调用FD_C_Imread读取图像获取
|
||||
> * **result**FD_C_SegmentationResult*): Segmentation检测结果,SegmentationResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||||
|
||||
|
||||
#### Predict结果
|
||||
|
||||
```c
|
||||
FD_C_Mat FD_C_VisSegmentation(FD_C_Mat im,
|
||||
FD_C_SegmentationResult* result,
|
||||
float weight)
|
||||
```
|
||||
>
|
||||
> 对结果进行可视化,返回可视化的图像。
|
||||
>
|
||||
> **参数**
|
||||
> * **im**(FD_C_Mat): 指向输入图像的指针
|
||||
> * **segmentation_result**(FD_C_SegmentationResult*): 指向 FD_C_SegmentationResult结构的指针
|
||||
> * **weight**(float): 透明度权重
|
||||
>
|
||||
> **返回**
|
||||
> * **vis_im**(FD_C_Mat): 指向可视化图像的指针
|
||||
|
||||
|
||||
## 其它文档
|
||||
|
||||
- [PPSegmentation 系列模型介绍](../../)
|
||||
- [PaddleSeg Python部署](../python)
|
||||
- [模型预测结果说明](../../../../../docs/api/vision_results/)
|
||||
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
|
104
examples/vision/segmentation/paddleseg/cpu-gpu/csharp/README.md
Executable file
104
examples/vision/segmentation/paddleseg/cpu-gpu/csharp/README.md
Executable file
@@ -0,0 +1,104 @@
|
||||
English | [简体中文](README_CN.md)
|
||||
# PaddleSeg C# Deployment Example
|
||||
|
||||
This directory provides `infer.cs` to finish the deployment of PaddleSeg on CPU/GPU.
|
||||
|
||||
Before deployment, two steps require confirmation
|
||||
|
||||
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
Please follow below instructions to compile and test in Windows. FastDeploy version 1.0.4 or above (x.x.x>=1.0.4) is required to support this model.
|
||||
|
||||
## 1. Download C# package management tool nuget client
|
||||
> https://dist.nuget.org/win-x86-commandline/v6.4.0/nuget.exe
|
||||
|
||||
Add nuget program into system variable **PATH**
|
||||
|
||||
## 2. Download model and image for test
|
||||
> https://bj.bcebos.com/paddlehub/fastdeploy/PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer.tgz # (Decompress it)
|
||||
> https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
|
||||
|
||||
|
||||
## 3. Compile example code
|
||||
|
||||
Open `x64 Native Tools Command Prompt for VS 2019` command tool on Windows, cd to the demo path of ppyoloe and execute commands
|
||||
|
||||
```shell
|
||||
cd D:\Download\fastdeploy-win-x64-gpu-x.x.x\examples\vision\segmentation\paddleseg\cpu-gpu\csharp
|
||||
|
||||
mkdir build && cd build
|
||||
cmake .. -G "Visual Studio 16 2019" -A x64 -DFASTDEPLOY_INSTALL_DIR=D:\Download\fastdeploy-win-x64-gpu-x.x.x -DCUDA_DIRECTORY="C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.2"
|
||||
|
||||
nuget restore
|
||||
msbuild infer_demo.sln /m:4 /p:Configuration=Release /p:Platform=x64
|
||||
```
|
||||
|
||||
For more information about how to use FastDeploy SDK to compile a project with Visual Studio 2019. Please refer to
|
||||
- [Using the FastDeploy C++ SDK on Windows Platform](../../../../../docs/en/faq/use_sdk_on_windows.md)
|
||||
|
||||
## 4. Execute compiled program
|
||||
|
||||
fastdeploy.dll and related dynamic libraries are required by the program. FastDeploy provide a script to copy all required dll to your program path.
|
||||
|
||||
```shell
|
||||
cd D:\Download\fastdeploy-win-x64-gpu-x.x.x
|
||||
|
||||
fastdeploy_init.bat install %cd% D:\Download\fastdeploy-win-x64-gpu-x.x.x\examples\vision\segmentation\paddleseg\cpu-gpu\csharp\build\Release
|
||||
```
|
||||
|
||||
Then you can run your program and test the model with image
|
||||
```shell
|
||||
cd Release
|
||||
# CPU inference
|
||||
infer_demo PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer cityscapes_demo.png 0
|
||||
# GPU inference
|
||||
infer_demo PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer cityscapes_demo.png 1
|
||||
```
|
||||
|
||||
## PaddleSeg C# Interface
|
||||
|
||||
### Model Class
|
||||
|
||||
```c#
|
||||
fastdeploy.vision.segmentation.PaddleSeg(
|
||||
string model_file,
|
||||
string params_file,
|
||||
string config_file,
|
||||
fastdeploy.RuntimeOption runtime_option = null,
|
||||
fastdeploy.ModelFormat model_format = ModelFormat.PADDLE)
|
||||
```
|
||||
|
||||
> PaddleSeg initialization
|
||||
|
||||
> **Params**
|
||||
|
||||
>> * **model_file**(str): Model file path
|
||||
>> * **params_file**(str): Parameter file path
|
||||
>> * **config_file**(str): Config file path
|
||||
>> * **runtime_option**(RuntimeOption): Backend inference configuration. null by default, which is the default configuration
|
||||
>> * **model_format**(ModelFormat): Model format.
|
||||
|
||||
#### Predict Function
|
||||
|
||||
```c#
|
||||
fastdeploy.SegmentationResult Predict(OpenCvSharp.Mat im)
|
||||
```
|
||||
|
||||
> Model prediction interface. Input images and output results directly.
|
||||
>
|
||||
> **Params**
|
||||
>
|
||||
>> * **im**(Mat): Input images in HWC or BGR format
|
||||
>>
|
||||
> **Return**
|
||||
>
|
||||
>> * **result**: Segmentation prediction results, refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for SegmentationResult
|
||||
|
||||
|
||||
## Other Documents
|
||||
|
||||
- [PPSegmentation Model Description](../../)
|
||||
- [PaddleSeg Python Deployment](../python)
|
||||
- [Model Prediction Results](../../../../../docs/api/vision_results/)
|
||||
- [How to switch the model inference backend engine](../../../../../docs/cn/faq/how_to_change_backend.md)
|
@@ -0,0 +1,102 @@
|
||||
[English](README.md) | 简体中文
|
||||
# PaddleSeg C#部署示例
|
||||
|
||||
本目录下提供`infer.cs`来调用C# API快速完成PaddleSeg模型在CPU/GPU上部署的示例。
|
||||
|
||||
在部署前,需确认以下两个步骤
|
||||
|
||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
在本目录执行如下命令即可在Windows完成编译测试,支持此模型需保证FastDeploy版本1.0.4以上(x.x.x>=1.0.4)
|
||||
|
||||
## 1. 下载C#包管理程序nuget客户端
|
||||
> https://dist.nuget.org/win-x86-commandline/v6.4.0/nuget.exe
|
||||
|
||||
下载完成后将该程序添加到环境变量**PATH**中
|
||||
|
||||
## 2. 下载模型文件和测试图片
|
||||
> https://bj.bcebos.com/paddlehub/fastdeploy/PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer.tgz # (下载后解压缩)
|
||||
> https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
|
||||
|
||||
|
||||
## 3. 编译示例代码
|
||||
|
||||
本文档编译的示例代码可在解压的库中找到,编译工具依赖VS 2019的安装,**Windows打开x64 Native Tools Command Prompt for VS 2019命令工具**,通过如下命令开始编译
|
||||
|
||||
```shell
|
||||
cd D:\Download\fastdeploy-win-x64-gpu-x.x.x\examples\vision\segmentation\paddleseg\cpu-gpu\csharp
|
||||
|
||||
mkdir build && cd build
|
||||
cmake .. -G "Visual Studio 16 2019" -A x64 -DFASTDEPLOY_INSTALL_DIR=D:\Download\fastdeploy-win-x64-gpu-x.x.x -DCUDA_DIRECTORY="C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.2"
|
||||
|
||||
nuget restore
|
||||
msbuild infer_demo.sln /m:4 /p:Configuration=Release /p:Platform=x64
|
||||
```
|
||||
|
||||
关于使用Visual Studio 2019创建sln工程,或者CMake工程等方式编译的更详细信息,可参考如下文档
|
||||
- [在 Windows 使用 FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
|
||||
- [FastDeploy C++库在Windows上的多种使用方式](../../../../../docs/cn/faq/use_sdk_on_windows_build.md)
|
||||
|
||||
## 4. 运行可执行程序
|
||||
|
||||
注意Windows上运行时,需要将FastDeploy依赖的库拷贝至可执行程序所在目录, 或者配置环境变量。FastDeploy提供了工具帮助我们快速将所有依赖库拷贝至可执行程序所在目录,通过如下命令将所有依赖的dll文件拷贝至可执行程序所在的目录(可能生成的可执行文件在Release下还有一层目录,这里假设生成的可执行文件在Release处)
|
||||
```shell
|
||||
cd D:\Download\fastdeploy-win-x64-gpu-x.x.x
|
||||
|
||||
fastdeploy_init.bat install %cd% D:\Download\fastdeploy-win-x64-gpu-x.x.x\examples\vision\segmentation\paddleseg\cpu-gpu\csharp\build\Release
|
||||
```
|
||||
|
||||
将dll拷贝到当前路径后,准备好模型和图片,使用如下命令运行可执行程序即可
|
||||
```shell
|
||||
cd Release
|
||||
# CPU推理
|
||||
infer_demo PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer cityscapes_demo.png 0
|
||||
# GPU推理
|
||||
infer_demo PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer cityscapes_demo.png 1
|
||||
```
|
||||
|
||||
## PaddleSeg C#接口
|
||||
|
||||
### 模型
|
||||
|
||||
```c#
|
||||
fastdeploy.vision.segmentation.PaddleSeg(
|
||||
string model_file,
|
||||
string params_file,
|
||||
string config_file,
|
||||
fastdeploy.RuntimeOption runtime_option = null,
|
||||
fastdeploy.ModelFormat model_format = ModelFormat.PADDLE)
|
||||
```
|
||||
|
||||
> PaddleSeg模型加载和初始化。
|
||||
|
||||
> **参数**
|
||||
|
||||
>> * **model_file**(str): 模型文件路径
|
||||
>> * **params_file**(str): 参数文件路径
|
||||
>> * **config_file**(str): 配置文件路径
|
||||
>> * **runtime_option**(RuntimeOption): 后端推理配置,默认为null,即采用默认配置
|
||||
>> * **model_format**(ModelFormat): 模型格式,默认为PADDLE格式
|
||||
|
||||
#### Predict函数
|
||||
|
||||
```c#
|
||||
fastdeploy.SegmentationResult Predict(OpenCvSharp.Mat im)
|
||||
```
|
||||
|
||||
> 模型预测接口,输入图像直接输出结果。
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
>> * **im**(Mat): 输入图像,注意需为HWC,BGR格式
|
||||
>>
|
||||
> **返回值**
|
||||
>
|
||||
>> * **result**: Segmentation检测结果,SegmentationResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||||
|
||||
|
||||
- [模型介绍](../../)
|
||||
- [Python部署](../python)
|
||||
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||||
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
|
Reference in New Issue
Block a user