support mtp in hybird-dp-tp mode (#4299)

This commit is contained in:
freeliuzc
2025-09-28 15:58:45 +08:00
committed by GitHub
parent 076c30cb0f
commit c8985727a6
2 changed files with 79 additions and 49 deletions

View File

@@ -147,6 +147,10 @@ class MTPProposer(Proposer):
kv_cache_shape = self.attn_backends[0].get_kv_cache_shape(
max_num_blocks=self.num_gpu_blocks, kv_cache_quant_type=kv_cache_quant_type
)
if kv_cache_quant_type == "block_wise_fp8":
kv_cache_scale_shape = [kv_cache_shape[0], kv_cache_shape[1], kv_cache_shape[2]]
local_rank = self.local_rank % self.parallel_config.tensor_parallel_size
if not self.parallel_config.do_profile and (
self.cache_config.enable_prefix_caching or self.parallel_config.splitwise_role != "mixed"
):
@@ -156,8 +160,8 @@ class MTPProposer(Proposer):
self.num_main_model_layers + self.model_config.num_hidden_layers,
):
key_cache = paddle.empty(shape=[], dtype=cache_type)
key_cache_name = f"key_caches_{i}_rank{self.local_rank}.device{self.device_id}"
val_cache_name = f"value_caches_{i}_rank{self.local_rank}.device{self.device_id}"
key_cache_name = f"key_caches_{i}_rank{local_rank}.device{self.device_id}"
val_cache_name = f"value_caches_{i}_rank{local_rank}.device{self.device_id}"
key_cache = share_external_data(key_cache, key_cache_name, kv_cache_shape)
cache_kvs_list.append(key_cache)
value_cache = paddle.empty(shape=[], dtype=cache_type)
@@ -177,6 +181,17 @@ class MTPProposer(Proposer):
fill_value=0,
dtype=cache_type,
)
if kv_cache_quant_type == "block_wise_fp8":
self.cache_kvs[f"key_cache_scales_{i}"] = paddle.full(
shape=kv_cache_scale_shape,
fill_value=0,
dtype=paddle.get_default_dtype(),
)
self.cache_kvs[f"value_cache_scales_{i}"] = paddle.full(
shape=kv_cache_scale_shape,
fill_value=0,
dtype=paddle.get_default_dtype(),
)
self.model_inputs["caches"] = list(self.cache_kvs.values())
for value in self.cache_kvs.values():
del value
@@ -610,7 +625,7 @@ class MTPProposer(Proposer):
self.max_model_len,
self.model_inputs["substep"],
)
if self.role == "prefill":
if self.role == "prefill" and self.parallel_config.tensor_parallel_rank == 0:
mtp_save_first_token(
self.model_inputs["base_model_draft_tokens"],
self.model_inputs["not_need_stop"],
@@ -697,7 +712,11 @@ class MTPProposer(Proposer):
)
if self.parallel_config.tensor_parallel_size > 1:
paddle.distributed.broadcast(sampled_token_ids, 0)
paddle.distributed.broadcast(
sampled_token_ids,
self.parallel_config.data_parallel_rank * self.parallel_config.tensor_parallel_size,
group=self.parallel_config.tp_group,
)
self._post_process(sampled_token_ids)