mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
support mtp in hybird-dp-tp mode (#4299)
This commit is contained in:
@@ -18,7 +18,7 @@ import paddle
|
||||
from paddle import nn
|
||||
from paddle.distributed import fleet
|
||||
|
||||
from fastdeploy.model_executor.utils import set_weight_attrs
|
||||
from fastdeploy.model_executor.utils import default_weight_loader, set_weight_attrs
|
||||
|
||||
from .utils import get_tensor
|
||||
|
||||
@@ -53,44 +53,61 @@ class ParallelEHProjection(nn.Layer):
|
||||
self.bias_key = prefix + ".bias"
|
||||
else:
|
||||
self.bias_key = None
|
||||
self.use_ep = fd_config.parallel_config.use_ep
|
||||
self.fd_config = fd_config
|
||||
self.tp_group = fd_config.parallel_config.tp_group
|
||||
self.column_cut = True
|
||||
self.nranks = fd_config.parallel_config.tensor_parallel_size
|
||||
|
||||
ColumnParallelLinear = fleet.meta_parallel.ColumnParallelLinear
|
||||
RowParallelLinear = fleet.meta_parallel.RowParallelLinear
|
||||
|
||||
if self.use_ep:
|
||||
self.weight = self.create_parameter(
|
||||
shape=[embedding_dim, num_embeddings],
|
||||
dtype=paddle.get_default_dtype(),
|
||||
is_bias=False,
|
||||
if self.column_cut:
|
||||
need_gather = True
|
||||
self.linear = ColumnParallelLinear(
|
||||
embedding_dim,
|
||||
num_embeddings,
|
||||
mp_group=self.tp_group,
|
||||
weight_attr=None,
|
||||
has_bias=True if self.bias_key is not None else False,
|
||||
gather_output=need_gather,
|
||||
fuse_matmul_bias=False, # False diff更小
|
||||
)
|
||||
else:
|
||||
if self.column_cut:
|
||||
need_gather = True
|
||||
self.linear = ColumnParallelLinear(
|
||||
embedding_dim,
|
||||
num_embeddings,
|
||||
mp_group=fleet.get_hybrid_communicate_group().get_model_parallel_group(),
|
||||
weight_attr=None,
|
||||
has_bias=True if self.bias_key is not None else False,
|
||||
gather_output=need_gather,
|
||||
fuse_matmul_bias=False, # False diff更小
|
||||
set_weight_attrs(
|
||||
self.linear.weight,
|
||||
{
|
||||
"weight_loader": default_weight_loader(self.fd_config),
|
||||
"model_format": self.fd_config.model_config.model_format,
|
||||
},
|
||||
)
|
||||
if self.bias_key is not None:
|
||||
set_weight_attrs(
|
||||
self.linear.bias,
|
||||
{"rl_need_attr": {"rl_tp_degree": fd_config.parallel_config.tensor_parallel_size}},
|
||||
)
|
||||
if self.nranks > 1:
|
||||
set_weight_attrs(self.linear.weight, {"output_dim": True})
|
||||
if self.bias_key is not None:
|
||||
set_weight_attrs(self.linear.bias, {"output_dim": True})
|
||||
else:
|
||||
self.linear = RowParallelLinear(
|
||||
embedding_dim,
|
||||
num_embeddings,
|
||||
mp_group=fleet.get_hybrid_communicate_group().get_model_parallel_group(),
|
||||
weight_attr=None,
|
||||
has_bias=True if self.bias_key is not None else False,
|
||||
input_is_parallel=False,
|
||||
fuse_matmul_bias=False, # False diff更小
|
||||
)
|
||||
set_weight_attrs(self.linear.weight, {"output_dim": False})
|
||||
else:
|
||||
self.linear = RowParallelLinear(
|
||||
embedding_dim,
|
||||
num_embeddings,
|
||||
mp_group=self.tp_group,
|
||||
weight_attr=None,
|
||||
has_bias=True if self.bias_key is not None else False,
|
||||
input_is_parallel=False,
|
||||
fuse_matmul_bias=False, # False diff更小
|
||||
)
|
||||
set_weight_attrs(
|
||||
self.linear.weight,
|
||||
{
|
||||
"weight_loader": default_weight_loader(self.fd_config),
|
||||
"model_format": self.fd_config.model_config.model_format,
|
||||
},
|
||||
)
|
||||
if self.nranks > 1:
|
||||
set_weight_attrs(self.linear.weight, {"output_dim": True})
|
||||
set_weight_attrs(
|
||||
self.linear.weight, {"rl_need_attr": {"rl_tp_degree": fd_config.parallel_config.tensor_parallel_size}}
|
||||
)
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
"""
|
||||
@@ -100,17 +117,14 @@ class ParallelEHProjection(nn.Layer):
|
||||
state_dict (dict): A dictionary containing the checkpoint weights and biases.
|
||||
"""
|
||||
|
||||
if self.use_ep:
|
||||
self.weight.set_value(get_tensor(state_dict.pop(self.weight_key)).astype(paddle.get_default_dtype()))
|
||||
else:
|
||||
weight_tensor = get_tensor(state_dict.pop(self.weight_key)).astype(paddle.get_default_dtype())
|
||||
if self.linear.weight.shape != weight_tensor.shape:
|
||||
weight_tensor = weight_tensor.transpose([1, 0])
|
||||
self.linear.weight.set_value(weight_tensor)
|
||||
weight_tensor = get_tensor(state_dict.pop(self.weight_key)).astype(paddle.get_default_dtype())
|
||||
if self.linear.weight.shape != weight_tensor.shape:
|
||||
weight_tensor = weight_tensor.transpose([1, 0])
|
||||
self.linear.weight.set_value(weight_tensor)
|
||||
|
||||
if self.bias_key is not None:
|
||||
bias = get_tensor(state_dict.pop(self.bias_key)).astype(paddle.get_default_dtype())
|
||||
self.linear.bias.set_value(bias)
|
||||
if self.bias_key is not None:
|
||||
bias = get_tensor(state_dict.pop(self.bias_key)).astype(paddle.get_default_dtype())
|
||||
self.linear.bias.set_value(bias)
|
||||
|
||||
def forward(self, input):
|
||||
"""
|
||||
@@ -123,8 +137,5 @@ class ParallelEHProjection(nn.Layer):
|
||||
Tensor: The output tensor after processing through the layer.
|
||||
"""
|
||||
logits = input
|
||||
if self.use_ep:
|
||||
logits = paddle.matmul(logits, self.weight)
|
||||
else:
|
||||
logits = self.linear(logits)
|
||||
logits = self.linear(logits)
|
||||
return logits
|
||||
|
Reference in New Issue
Block a user