【Hackathon 9th No.78】add test_chat.py (#3958)

This commit is contained in:
co63oc
2025-09-12 16:53:27 +08:00
committed by GitHub
parent 06f4b49ca3
commit c86b3357ce
2 changed files with 106 additions and 0 deletions

View File

@@ -0,0 +1,63 @@
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import os
import unittest
import weakref
from fastdeploy.entrypoints.llm import LLM
MODEL_NAME = os.getenv("MODEL_PATH") + "/ERNIE-4.5-0.3B-Paddle"
class TestChat(unittest.TestCase):
"""Test case for chat functionality"""
PROMPTS = [
[{"content": "The color of tomato is ", "role": "user"}],
[{"content": "The equation 2+3= ", "role": "user"}],
[{"content": "The equation 4-1= ", "role": "user"}],
[{"content": "PaddlePaddle is ", "role": "user"}],
]
@classmethod
def setUpClass(cls):
try:
llm = LLM(
model=MODEL_NAME,
max_num_batched_tokens=4096,
tensor_parallel_size=1,
engine_worker_queue_port=int(os.getenv("FD_ENGINE_QUEUE_PORT")),
cache_queue_port=int(os.getenv("FD_CACHE_QUEUE_PORT")),
)
cls.llm = weakref.proxy(llm)
except Exception as e:
print(f"Setting up LLM failed: {e}")
raise unittest.SkipTest(f"LLM initialization failed: {e}")
@classmethod
def tearDownClass(cls):
"""Clean up after all tests have run"""
if hasattr(cls, "llm"):
del cls.llm
def test_chat(self):
outputs = self.llm.chat(messages=self.PROMPTS, sampling_params=None)
self.assertEqual(len(self.PROMPTS), len(outputs))
if __name__ == "__main__":
unittest.main()

View File

@@ -14,6 +14,7 @@
# limitations under the License. # limitations under the License.
""" """
import copy
import os import os
import unittest import unittest
import weakref import weakref
@@ -120,6 +121,48 @@ class TestGeneration(unittest.TestCase):
outputs = self.llm.generate(prompts=self.PROMPTS, sampling_params=None) outputs = self.llm.generate(prompts=self.PROMPTS, sampling_params=None)
self.assertEqual(len(self.PROMPTS), len(outputs)) self.assertEqual(len(self.PROMPTS), len(outputs))
def test_consistency_single_prompt_tokens_chat(self):
"""Test consistency between different prompt input formats"""
sampling_params = SamplingParams(temperature=1.0, top_p=0.0)
for prompt_token_ids in self.TOKEN_IDS:
with self.subTest(prompt_token_ids=prompt_token_ids):
output1 = self.llm.chat(messages=[prompt_token_ids], sampling_params=sampling_params)
output2 = self.llm.chat(
[{"prompt": "", "prompt_token_ids": prompt_token_ids}], sampling_params=sampling_params
)
self.assert_outputs_equal(output1, output2)
def test_multiple_sampling_params_chat(self):
"""Test multiple sampling parameters combinations"""
sampling_params = [
SamplingParams(temperature=0.01, top_p=0.95),
SamplingParams(temperature=0.3, top_p=0.95),
SamplingParams(temperature=0.7, top_p=0.95),
SamplingParams(temperature=0.99, top_p=0.95),
]
prompts = copy.copy(self.PROMPTS)
# Multiple SamplingParams should be matched with each prompt
outputs = self.llm.chat(messages=prompts, sampling_params=sampling_params)
self.assertEqual(len(self.PROMPTS), len(outputs))
prompts = copy.copy(self.PROMPTS)
# Exception raised if size mismatch
with self.assertRaises(ValueError):
self.llm.chat(messages=prompts, sampling_params=sampling_params[:3])
prompts = copy.copy(self.PROMPTS)
# Single SamplingParams should be applied to every prompt
single_sampling_params = SamplingParams(temperature=0.3, top_p=0.95)
outputs = self.llm.chat(messages=prompts, sampling_params=single_sampling_params)
self.assertEqual(len(self.PROMPTS), len(outputs))
prompts = copy.copy(self.PROMPTS)
# sampling_params is None, default params should be applied
outputs = self.llm.chat(messages=prompts, sampling_params=None)
self.assertEqual(len(self.PROMPTS), len(outputs))
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()