mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
【Hackathon 9th No.78】add test_chat.py (#3958)
This commit is contained in:
63
tests/entrypoints/test_chat.py
Normal file
63
tests/entrypoints/test_chat.py
Normal file
@@ -0,0 +1,63 @@
|
|||||||
|
"""
|
||||||
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import unittest
|
||||||
|
import weakref
|
||||||
|
|
||||||
|
from fastdeploy.entrypoints.llm import LLM
|
||||||
|
|
||||||
|
MODEL_NAME = os.getenv("MODEL_PATH") + "/ERNIE-4.5-0.3B-Paddle"
|
||||||
|
|
||||||
|
|
||||||
|
class TestChat(unittest.TestCase):
|
||||||
|
"""Test case for chat functionality"""
|
||||||
|
|
||||||
|
PROMPTS = [
|
||||||
|
[{"content": "The color of tomato is ", "role": "user"}],
|
||||||
|
[{"content": "The equation 2+3= ", "role": "user"}],
|
||||||
|
[{"content": "The equation 4-1= ", "role": "user"}],
|
||||||
|
[{"content": "PaddlePaddle is ", "role": "user"}],
|
||||||
|
]
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def setUpClass(cls):
|
||||||
|
try:
|
||||||
|
llm = LLM(
|
||||||
|
model=MODEL_NAME,
|
||||||
|
max_num_batched_tokens=4096,
|
||||||
|
tensor_parallel_size=1,
|
||||||
|
engine_worker_queue_port=int(os.getenv("FD_ENGINE_QUEUE_PORT")),
|
||||||
|
cache_queue_port=int(os.getenv("FD_CACHE_QUEUE_PORT")),
|
||||||
|
)
|
||||||
|
cls.llm = weakref.proxy(llm)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Setting up LLM failed: {e}")
|
||||||
|
raise unittest.SkipTest(f"LLM initialization failed: {e}")
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def tearDownClass(cls):
|
||||||
|
"""Clean up after all tests have run"""
|
||||||
|
if hasattr(cls, "llm"):
|
||||||
|
del cls.llm
|
||||||
|
|
||||||
|
def test_chat(self):
|
||||||
|
outputs = self.llm.chat(messages=self.PROMPTS, sampling_params=None)
|
||||||
|
self.assertEqual(len(self.PROMPTS), len(outputs))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
unittest.main()
|
@@ -14,6 +14,7 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
import copy
|
||||||
import os
|
import os
|
||||||
import unittest
|
import unittest
|
||||||
import weakref
|
import weakref
|
||||||
@@ -120,6 +121,48 @@ class TestGeneration(unittest.TestCase):
|
|||||||
outputs = self.llm.generate(prompts=self.PROMPTS, sampling_params=None)
|
outputs = self.llm.generate(prompts=self.PROMPTS, sampling_params=None)
|
||||||
self.assertEqual(len(self.PROMPTS), len(outputs))
|
self.assertEqual(len(self.PROMPTS), len(outputs))
|
||||||
|
|
||||||
|
def test_consistency_single_prompt_tokens_chat(self):
|
||||||
|
"""Test consistency between different prompt input formats"""
|
||||||
|
sampling_params = SamplingParams(temperature=1.0, top_p=0.0)
|
||||||
|
|
||||||
|
for prompt_token_ids in self.TOKEN_IDS:
|
||||||
|
with self.subTest(prompt_token_ids=prompt_token_ids):
|
||||||
|
output1 = self.llm.chat(messages=[prompt_token_ids], sampling_params=sampling_params)
|
||||||
|
output2 = self.llm.chat(
|
||||||
|
[{"prompt": "", "prompt_token_ids": prompt_token_ids}], sampling_params=sampling_params
|
||||||
|
)
|
||||||
|
self.assert_outputs_equal(output1, output2)
|
||||||
|
|
||||||
|
def test_multiple_sampling_params_chat(self):
|
||||||
|
"""Test multiple sampling parameters combinations"""
|
||||||
|
sampling_params = [
|
||||||
|
SamplingParams(temperature=0.01, top_p=0.95),
|
||||||
|
SamplingParams(temperature=0.3, top_p=0.95),
|
||||||
|
SamplingParams(temperature=0.7, top_p=0.95),
|
||||||
|
SamplingParams(temperature=0.99, top_p=0.95),
|
||||||
|
]
|
||||||
|
|
||||||
|
prompts = copy.copy(self.PROMPTS)
|
||||||
|
# Multiple SamplingParams should be matched with each prompt
|
||||||
|
outputs = self.llm.chat(messages=prompts, sampling_params=sampling_params)
|
||||||
|
self.assertEqual(len(self.PROMPTS), len(outputs))
|
||||||
|
|
||||||
|
prompts = copy.copy(self.PROMPTS)
|
||||||
|
# Exception raised if size mismatch
|
||||||
|
with self.assertRaises(ValueError):
|
||||||
|
self.llm.chat(messages=prompts, sampling_params=sampling_params[:3])
|
||||||
|
|
||||||
|
prompts = copy.copy(self.PROMPTS)
|
||||||
|
# Single SamplingParams should be applied to every prompt
|
||||||
|
single_sampling_params = SamplingParams(temperature=0.3, top_p=0.95)
|
||||||
|
outputs = self.llm.chat(messages=prompts, sampling_params=single_sampling_params)
|
||||||
|
self.assertEqual(len(self.PROMPTS), len(outputs))
|
||||||
|
|
||||||
|
prompts = copy.copy(self.PROMPTS)
|
||||||
|
# sampling_params is None, default params should be applied
|
||||||
|
outputs = self.llm.chat(messages=prompts, sampling_params=None)
|
||||||
|
self.assertEqual(len(self.PROMPTS), len(outputs))
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
unittest.main()
|
unittest.main()
|
||||||
|
Reference in New Issue
Block a user