mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 00:33:03 +08:00
[Feature] support pool (#3827)
* support pool * update pooling * add pooler_config and check * update * support AutoWeightsLoader load weight * fix * update * delete print * update pre-commit * fix * fix xpu * fix ModelRegistry->model_registry * fix Copilot review * fix pooler.py * delete StepPooler * fix abstract * fix default_loader_v1 * fix Pre Commit * support torch qwen3 dense * add test and fix torch-qwen * fix * fix * adapter ci: * fix review * fix pooling_params.py * fix * fix tasks.py 2025 * fix print and logger * Modefy ModelRegistry and delete AutoWeightsLoader * fix logger * fix test_embedding * fix ci bug * ernie4_5 model_registry * fix test * support Qwen3-Embedding-0.6B tp=1 load * fix extra code * fix * delete fix vocab_size * delete prepare_params_dict * fix:
This commit is contained in:
182
tests/pooling/test_embedding.py
Normal file
182
tests/pooling/test_embedding.py
Normal file
@@ -0,0 +1,182 @@
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
|
||||
import paddle
|
||||
import pytest
|
||||
|
||||
from fastdeploy.config import (
|
||||
CacheConfig,
|
||||
FDConfig,
|
||||
GraphOptimizationConfig,
|
||||
LoadConfig,
|
||||
ModelConfig,
|
||||
ParallelConfig,
|
||||
)
|
||||
from fastdeploy.model_executor.models.model_base import ModelRegistry
|
||||
|
||||
current_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
project_root = os.path.abspath(os.path.join(current_dir, ".."))
|
||||
if project_root not in sys.path:
|
||||
sys.path.insert(0, project_root)
|
||||
|
||||
from tests.model_loader.utils import get_torch_model_path
|
||||
|
||||
|
||||
class TestModelLoader:
|
||||
|
||||
@pytest.fixture(scope="session", autouse=True)
|
||||
def setup_paddle(self):
|
||||
if not paddle.is_compiled_with_cuda():
|
||||
print("CUDA not available, using CPU")
|
||||
paddle.set_device("cpu")
|
||||
else:
|
||||
print("Using CUDA device")
|
||||
paddle.set_device("gpu")
|
||||
yield
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def model_path(self):
|
||||
try:
|
||||
torch_model_path = get_torch_model_path("Qwen3-0.6B")
|
||||
if os.path.exists(torch_model_path):
|
||||
return torch_model_path
|
||||
except Exception as e:
|
||||
print(f"Could not get torch model path: {e}")
|
||||
|
||||
@pytest.fixture
|
||||
def model_config(self, model_path):
|
||||
model_args = {
|
||||
"model": model_path,
|
||||
"dtype": "bfloat16",
|
||||
"max_model_len": 8192,
|
||||
"tensor_parallel_size": 1,
|
||||
"runner": "auto",
|
||||
"convert": "auto",
|
||||
}
|
||||
|
||||
try:
|
||||
return ModelConfig(model_args)
|
||||
except Exception as e:
|
||||
print(f"Could not create ModelConfig: {e}")
|
||||
|
||||
@pytest.fixture
|
||||
def fd_config(self, model_config):
|
||||
try:
|
||||
cache_args = {
|
||||
"block_size": 64,
|
||||
"gpu_memory_utilization": 0.9,
|
||||
"cache_dtype": "bfloat16",
|
||||
"model_cfg": model_config,
|
||||
"tensor_parallel_size": 1,
|
||||
}
|
||||
cache_config = CacheConfig(cache_args)
|
||||
|
||||
parallel_args = {
|
||||
"tensor_parallel_size": 1,
|
||||
"data_parallel_size": 1,
|
||||
}
|
||||
parallel_config = ParallelConfig(parallel_args)
|
||||
|
||||
load_args = {}
|
||||
load_config = LoadConfig(load_args)
|
||||
|
||||
graph_opt_args = {
|
||||
"enable_cudagraph": False,
|
||||
"cudagraph_capture_sizes": None,
|
||||
}
|
||||
graph_opt_config = GraphOptimizationConfig(graph_opt_args)
|
||||
|
||||
return FDConfig(
|
||||
model_config=model_config,
|
||||
cache_config=cache_config,
|
||||
parallel_config=parallel_config,
|
||||
load_config=load_config,
|
||||
graph_opt_config=graph_opt_config,
|
||||
test_mode=True,
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"Could not create FDConfig: {e}")
|
||||
|
||||
@pytest.fixture
|
||||
def model_json_config(self, model_path):
|
||||
config_path = os.path.join(model_path, "config.json")
|
||||
if os.path.exists(config_path):
|
||||
with open(config_path, "r", encoding="utf-8") as f:
|
||||
return json.load(f)
|
||||
return None
|
||||
|
||||
def test_embedding_with_none_convert_type(self, fd_config, model_json_config):
|
||||
if model_json_config is None:
|
||||
pytest.skip("Model config not available")
|
||||
|
||||
if fd_config is None:
|
||||
pytest.skip("FDConfig not available")
|
||||
|
||||
print("=" * 60)
|
||||
print("Testing initialize_model with convert_type='none'")
|
||||
print("=" * 60)
|
||||
|
||||
architectures = model_json_config.get("architectures", [])
|
||||
if not architectures:
|
||||
pytest.skip("No architectures found in model config")
|
||||
|
||||
fd_config.model_config.convert_type = "none"
|
||||
|
||||
try:
|
||||
model_cls = ModelRegistry.get_class(architectures)
|
||||
|
||||
if hasattr(model_cls, "__name__"):
|
||||
assert (
|
||||
"ForEmbedding" not in model_cls.__name__
|
||||
), f"Standard model should not have 'ForEmbedding' in name, but got: {model_cls.__name__}"
|
||||
print(f"Confirmed standard model type (no ForEmbedding): {model_cls.__name__}")
|
||||
|
||||
standard_methods = set(dir(model_cls))
|
||||
assert "_init_pooler" not in standard_methods, "Standard model should not have _init_pooler method"
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error in none: {e}")
|
||||
|
||||
def test_embedding_with_embed_convert_type(self, fd_config, model_json_config):
|
||||
if model_json_config is None:
|
||||
pytest.skip("Model config not available")
|
||||
|
||||
if fd_config is None:
|
||||
pytest.skip("FDConfig not available")
|
||||
|
||||
print("=" * 60)
|
||||
print("Testing embedding with convert_type='embed'")
|
||||
print("=" * 60)
|
||||
|
||||
architectures = model_json_config.get("architectures", [])
|
||||
if not architectures:
|
||||
pytest.skip("No architectures found in model config")
|
||||
|
||||
fd_config.model_config.convert_type = "embed"
|
||||
|
||||
try:
|
||||
model_cls = ModelRegistry.get_class(architectures)
|
||||
if hasattr(model_cls, "__name__"):
|
||||
assert "ForEmbedding" in model_cls.__name__, "Embedding model should have 'ForEmbedding' in name"
|
||||
print(f"Confirmed embedding model type: {model_cls.__name__}")
|
||||
|
||||
embedding_methods = set(dir(model_cls))
|
||||
assert "_init_pooler" in embedding_methods, "Embedding model should have _init_pooler method"
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error in convert embed: {e}")
|
Reference in New Issue
Block a user