mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 01:22:59 +08:00
[Feature] support pool (#3827)
* support pool * update pooling * add pooler_config and check * update * support AutoWeightsLoader load weight * fix * update * delete print * update pre-commit * fix * fix xpu * fix ModelRegistry->model_registry * fix Copilot review * fix pooler.py * delete StepPooler * fix abstract * fix default_loader_v1 * fix Pre Commit * support torch qwen3 dense * add test and fix torch-qwen * fix * fix * adapter ci: * fix review * fix pooling_params.py * fix * fix tasks.py 2025 * fix print and logger * Modefy ModelRegistry and delete AutoWeightsLoader * fix logger * fix test_embedding * fix ci bug * ernie4_5 model_registry * fix test * support Qwen3-Embedding-0.6B tp=1 load * fix extra code * fix * delete fix vocab_size * delete prepare_params_dict * fix:
This commit is contained in:
54
fastdeploy/model_executor/models/interfaces_base.py
Normal file
54
fastdeploy/model_executor/models/interfaces_base.py
Normal file
@@ -0,0 +1,54 @@
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Type
|
||||
|
||||
from paddle import nn
|
||||
|
||||
|
||||
def is_text_generation_model(model_cls: Type[nn.Layer]) -> bool:
|
||||
from .model_base import ModelForCasualLM
|
||||
|
||||
return issubclass(model_cls, ModelForCasualLM)
|
||||
|
||||
|
||||
def is_pooling_model(model_cls: Type[nn.Layer]) -> bool:
|
||||
class_name = model_cls.__name__
|
||||
pooling_indicators = ["Embedding", "ForSequenceClassification"]
|
||||
return (
|
||||
any(indicator in class_name for indicator in pooling_indicators)
|
||||
or hasattr(model_cls, "is_embedding_model")
|
||||
and model_cls.is_embedding_model
|
||||
)
|
||||
|
||||
|
||||
def is_multimodal_model(class_name: str) -> bool:
|
||||
multimodal_indicators = ["VL", "Vision", "ConditionalGeneration"]
|
||||
return any(indicator in class_name for indicator in multimodal_indicators)
|
||||
|
||||
|
||||
def determine_model_category(class_name: str):
|
||||
from fastdeploy.model_executor.models.model_base import ModelCategory
|
||||
|
||||
if any(pattern in class_name for pattern in ["VL", "Vision", "ConditionalGeneration"]):
|
||||
return ModelCategory.MULTIMODAL
|
||||
elif any(pattern in class_name for pattern in ["Embedding", "ForSequenceClassification"]):
|
||||
return ModelCategory.EMBEDDING
|
||||
return ModelCategory.TEXT_GENERATION
|
||||
|
||||
|
||||
def get_default_pooling_type(model_cls: Type[nn.Layer] = None) -> str:
|
||||
if model_cls is not None:
|
||||
return getattr(model_cls, "default_pooling_type", "LAST")
|
||||
return "LAST"
|
Reference in New Issue
Block a user