[Feature] support pool (#3827)

* support pool

* update pooling

* add pooler_config and check

* update

* support AutoWeightsLoader load weight

* fix

* update

* delete print

* update pre-commit

* fix

* fix xpu

* fix ModelRegistry->model_registry

* fix Copilot review

* fix pooler.py

* delete StepPooler

* fix abstract

* fix default_loader_v1

* fix Pre Commit

* support torch qwen3 dense

* add test and fix torch-qwen

* fix

* fix

* adapter ci:

* fix review

* fix pooling_params.py

* fix

* fix tasks.py 2025

* fix print and logger

* Modefy ModelRegistry and delete AutoWeightsLoader

* fix logger

* fix test_embedding

* fix ci bug

* ernie4_5 model_registry

* fix test

* support Qwen3-Embedding-0.6B tp=1 load

* fix extra code

* fix

* delete fix vocab_size

* delete prepare_params_dict

* fix:
This commit is contained in:
lizexu123
2025-09-22 14:09:09 +08:00
committed by GitHub
parent da74a5f0b3
commit c86945ef49
36 changed files with 2371 additions and 51 deletions

View File

@@ -0,0 +1,214 @@
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from collections.abc import Iterable
from typing import Optional, TypeVar
import paddle
import paddle.nn as nn
from fastdeploy.config import ModelConfig
from fastdeploy.model_executor.layers.activation import get_act_fn
from fastdeploy.model_executor.models.interfaces_base import is_pooling_model
from fastdeploy.transformer_utils.config import get_hf_file_to_dict
_T = TypeVar("_T", bound=type[nn.Layer])
_GENERATE_SUFFIXES = [
"ForCausalLM",
"ForConditionalGeneration",
"ChatModel",
"LMHeadModel",
]
def _load_dense_weights(linear: nn.Linear, folder: str, model_config: "ModelConfig") -> bool:
"""Load weights using vLLM's weight_loader pattern."""
from fastdeploy.model_executor.utils import default_weight_loader
filename = "model.safetensors"
file_path = f"{folder}/{filename}" if folder else filename
try:
file_bytes = get_hf_file_to_dict(file_path, model_config.model, model_config.revision)
if not file_bytes:
return False
state_dict = {}
if filename.endswith(".safetensors"):
import io
from safetensors.numpy import load as load_safetensors
numpy_tensors = load_safetensors(io.BytesIO(file_bytes))
for key, numpy_array in numpy_tensors.items():
state_dict[key] = paddle.to_tensor(numpy_array)
else:
import io
state_dict = paddle.load(io.BytesIO(file_bytes))
weight_keys = ["weight", "linear.weight", "dense.weight"]
for weight_key in weight_keys:
if weight_key in state_dict:
weight_loader = getattr(linear.weight, "weight_loader", default_weight_loader)
weight_loader(linear.weight, state_dict[weight_key].astype(paddle.float32))
bias_key = weight_key.replace("weight", "bias")
if linear.bias is not None and bias_key in state_dict:
bias_loader = getattr(linear.bias, "weight_loader", default_weight_loader)
bias_loader(linear.bias, state_dict[bias_key].astype(paddle.float32))
return True
except Exception as e:
print(f"Failed to load :{e}")
return False
return False
def _load_st_projector(model_config: "ModelConfig") -> Optional[nn.Layer]:
try:
modules = get_hf_file_to_dict("modules.json", model_config.model, model_config.revision)
if not modules:
return None
if isinstance(modules, dict):
modules = modules.get("modules", [])
dense_modules = [m for m in modules if m.get("type") == "sentence_transformers.models.Dense"]
if not dense_modules:
return None
layers = []
for module in dense_modules:
folder = module.get("path", "")
config_path = f"{folder}/config.json" if folder else "config.json"
layer_config = get_hf_file_to_dict(config_path, model_config.model, model_config.revision)
if not layer_config:
continue
linear = nn.Linear(
layer_config.get("in_features", 768),
layer_config.get("out_features", 768),
bias=layer_config.get("bias", True),
)
linear = linear.astype(paddle.float32)
if not _load_dense_weights(linear, folder, model_config):
continue
layers.append(linear)
if act_name := layer_config.get("activation_function"):
layers.append(get_act_fn(act_name))
return nn.Sequential(*layers).astype(paddle.float32)
except Exception as e:
print(f"ST projector loading failed:{e}")
return None
def _create_pooling_model_cls(orig_cls: _T) -> _T:
class ModelForPooling(orig_cls):
def __init__(self, fd_config, *args, **kwargs):
super().__init__(fd_config, *args, **kwargs)
self.fd_config = fd_config
self.is_pooling_model = True
# These are not used in pooling models
for attr in ("lm_head", "logits_processor"):
if hasattr(self, attr):
delattr(self, attr)
# If the model already defines a pooler instance, don't overwrite it
if not getattr(self, "pooler", None):
self._init_pooler(fd_config)
def _init_pooler(self, fd_config):
raise NotImplementedError
def load_weights(self, weights: Iterable[tuple[str, paddle.Tensor]]):
# TODO: Support uninitialized params tracking
# We have deleted this attribute, so don't load it
weights = ((name, data) for name, data in weights if not name.startswith("lm_head."))
# If `*ForCausalLM` defines `load_weights` on the inner model
# and there are no other inner modules with parameters,
# we support loading from both `*Model` and `*ForCausalLM`
if hasattr(self, "model") and hasattr(self.model, "load_weights"):
# Whether only `self.model` contains parameters
model_is_only_param = all(
name == "model" or not any(child.parameters()) for name, child in self.named_children()
)
if model_is_only_param:
weights = ((name[6:], data) for name, data in weights if name.startswith("model."))
loaded_params = self.model.load_weights(weights)
loaded_params = {f"model.{name}" for name in loaded_params}
return loaded_params
# For most other models
if hasattr(orig_cls, "load_weights"):
return orig_cls.load_weights(self, weights) # type: ignore
# Fallback
else:
raise ValueError("No load_weights method found in the model.")
return ModelForPooling
def _get_pooling_model_name(orig_model_name: str, pooling_suffix: str) -> str:
model_name = orig_model_name
for generate_suffix in _GENERATE_SUFFIXES:
model_name = model_name.removesuffix(generate_suffix)
return model_name + pooling_suffix
def as_embedding_model(cls: _T) -> _T:
"""
Subclass an existing vLLM model to support embeddings.
By default, the embeddings of the whole prompt are extracted from the
normalized hidden state corresponding to the last token.
Note:
We assume that no extra layers are added to the original model;
please implement your own model if this is not the case.
"""
# Avoid modifying existing embedding models
if is_pooling_model(cls):
return cls
from fastdeploy.model_executor.layers.pooler import DispatchPooler, Pooler
class ModelForEmbedding(_create_pooling_model_cls(cls)):
def _init_pooler(self, fd_config, prefix: str = ""):
pooler_config = fd_config.model_config.pooler_config
assert pooler_config is not None
self.pooler = DispatchPooler(
{
"encode": Pooler.for_encode(pooler_config, fd_config.model_config),
"embed": Pooler.for_embed(pooler_config, fd_config.model_config),
},
)
ModelForEmbedding.__name__ = _get_pooling_model_name(cls.__name__, "ForEmbedding")
return ModelForEmbedding