[Model] add vsr serials models (#518)

* [Model] add vsr serials models

Signed-off-by: ChaoII <849453582@qq.com>

* [Model] add vsr serials models

Signed-off-by: ChaoII <849453582@qq.com>

* fix build problem

Signed-off-by: ChaoII <849453582@qq.com>

* fix code style

Signed-off-by: ChaoII <849453582@qq.com>

* modify according to review suggestions

Signed-off-by: ChaoII <849453582@qq.com>

* modify vsr trt example

Signed-off-by: ChaoII <849453582@qq.com>

* update sr directory

* fix BindPPSR

* add doxygen comment

* add sr unit test

* update model file url

Signed-off-by: ChaoII <849453582@qq.com>
Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
ChaoII
2022-11-21 10:58:28 +08:00
committed by GitHub
parent 1ac54c96bd
commit c7ec14de95
40 changed files with 2526 additions and 8 deletions

View File

@@ -0,0 +1,297 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
#ifdef WIN32
const char sep = '\\';
#else
const char sep = '/';
#endif
void CpuInfer(const std::string& model_dir,
const std::string& video_file, int frame_num) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto model = fastdeploy::vision::sr::BasicVSR(model_file, params_file);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
// note: input/output shape is [b, n, c, h, w] (n = frame_nums; b=1(default))
// b and n is dependent on export model shape
// see https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/zh_CN/tutorials/video_super_resolution.md
cv::VideoCapture capture;
// change your save video path
std::string video_out_name = "output.mp4";
capture.open(video_file);
if (!capture.isOpened())
{
std::cout<<"can not open video "<<std::endl;
return;
}
// Get Video info :fps, frame count
// it used 4.x version of opencv below
// notice your opencv version and method of api.
int video_fps = static_cast<int>(capture.get(cv::CAP_PROP_FPS));
int video_frame_count = static_cast<int>(capture.get(cv::CAP_PROP_FRAME_COUNT));
// Set fixed size for output frame, only for msvsr model
int out_width = 1280;
int out_height = 720;
std::cout << "fps: " << video_fps << "\tframe_count: " << video_frame_count << std::endl;
// Create VideoWriter for output
cv::VideoWriter video_out;
std::string video_out_path("./");
video_out_path += video_out_name;
int fcc = cv::VideoWriter::fourcc('m', 'p', '4', 'v');
video_out.open(video_out_path, fcc, video_fps, cv::Size(out_width, out_height), true);
if (!video_out.isOpened())
{
std::cout << "create video writer failed!" << std::endl;
return;
}
// Capture all frames and do inference
cv::Mat frame;
int frame_id = 0;
bool reach_end = false;
while (capture.isOpened())
{
std::vector<cv::Mat> imgs;
for (int i = 0; i < frame_num; i++)
{
capture.read(frame);
if (!frame.empty())
{
imgs.push_back(frame);
}else{
reach_end = true;
}
}
if (reach_end)
{
break;
}
std::vector<cv::Mat> results;
model.Predict(imgs, results);
for (auto &item : results)
{
// cv::imshow("13",item);
// cv::waitKey(30);
video_out.write(item);
std::cout << "Processing frame: "<< frame_id << std::endl;
frame_id += 1;
}
}
std::cout << "inference finished, output video saved at " << video_out_path << std::endl;
capture.release();
video_out.release();
}
void GpuInfer(const std::string& model_dir,
const std::string& video_file, int frame_num) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
auto model = fastdeploy::vision::sr::BasicVSR(
model_file, params_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
// note: input/output shape is [b, n, c, h, w] (n = frame_nums; b=1(default))
// b and n is dependent on export model shape
// see https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/zh_CN/tutorials/video_super_resolution.md
cv::VideoCapture capture;
// change your save video path
std::string video_out_name = "output.mp4";
capture.open(video_file);
if (!capture.isOpened())
{
std::cout<<"can not open video "<<std::endl;
return;
}
// Get Video info :fps, frame count
int video_fps = static_cast<int>(capture.get(cv::CAP_PROP_FPS));
int video_frame_count = static_cast<int>(capture.get(cv::CAP_PROP_FRAME_COUNT));
// Set fixed size for output frame, only for msvsr model
int out_width = 1280;
int out_height = 720;
std::cout << "fps: " << video_fps << "\tframe_count: " << video_frame_count << std::endl;
// Create VideoWriter for output
cv::VideoWriter video_out;
std::string video_out_path("./");
video_out_path += video_out_name;
int fcc = cv::VideoWriter::fourcc('m', 'p', '4', 'v');
video_out.open(video_out_path, fcc, video_fps, cv::Size(out_width, out_height), true);
if (!video_out.isOpened())
{
std::cout << "create video writer failed!" << std::endl;
return;
}
// Capture all frames and do inference
cv::Mat frame;
int frame_id = 0;
bool reach_end = false;
while (capture.isOpened())
{
std::vector<cv::Mat> imgs;
for (int i = 0; i < frame_num; i++)
{
capture.read(frame);
if (!frame.empty())
{
imgs.push_back(frame);
}else{
reach_end = true;
}
}
if (reach_end)
{
break;
}
std::vector<cv::Mat> results;
model.Predict(imgs, results);
for (auto &item : results)
{
// cv::imshow("13",item);
// cv::waitKey(30);
video_out.write(item);
std::cout << "Processing frame: "<< frame_id << std::endl;
frame_id += 1;
}
}
std::cout << "inference finished, output video saved at " << video_out_path << std::endl;
capture.release();
video_out.release();
}
void TrtInfer(const std::string& model_dir,
const std::string& video_file, int frame_num) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
option.UseTrtBackend();
// use paddle-TRT
option.EnablePaddleToTrt();
auto model = fastdeploy::vision::sr::BasicVSR(
model_file, params_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
// note: input/output shape is [b, n, c, h, w] (n = frame_nums; b=1(default))
// b and n is dependent on export model shape
// see https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/zh_CN/tutorials/video_super_resolution.md
cv::VideoCapture capture;
// change your save video path
std::string video_out_name = "output.mp4";
capture.open(video_file);
if (!capture.isOpened())
{
std::cout<<"can not open video "<<std::endl;
return;
}
// Get Video info :fps, frame count
int video_fps = static_cast<int>(capture.get(cv::CAP_PROP_FPS));
int video_frame_count = static_cast<int>(capture.get(cv::CAP_PROP_FRAME_COUNT));
// Set fixed size for output frame, only for msvsr model
//Note that the resolution between the size and the original input is consistent when the model is exported,
// for example: [1,2,3,180,320], after 4x super separation [1,2,3,720,1080].
//Therefore, it is very important to derive the model
int out_width = 1280;
int out_height = 720;
std::cout << "fps: " << video_fps << "\tframe_count: " << video_frame_count << std::endl;
// Create VideoWriter for output
cv::VideoWriter video_out;
std::string video_out_path("./");
video_out_path += video_out_name;
int fcc = cv::VideoWriter::fourcc('m', 'p', '4', 'v');
video_out.open(video_out_path, fcc, video_fps, cv::Size(out_width, out_height), true);
if (!video_out.isOpened())
{
std::cout << "create video writer failed!" << std::endl;
return;
}
// Capture all frames and do inference
cv::Mat frame;
int frame_id = 0;
bool reach_end = false;
while (capture.isOpened())
{
std::vector<cv::Mat> imgs;
for (int i = 0; i < frame_num; i++)
{
capture.read(frame);
if (!frame.empty())
{
imgs.push_back(frame);
}else{
reach_end = true;
}
}
if (reach_end)
{
break;
}
std::vector<cv::Mat> results;
model.Predict(imgs, results);
for (auto &item : results)
{
// cv::imshow("13",item);
// cv::waitKey(30);
video_out.write(item);
std::cout << "Processing frame: "<< frame_id << std::endl;
frame_id += 1;
}
}
std::cout << "inference finished, output video saved at " << video_out_path << std::endl;
capture.release();
video_out.release();
}
int main(int argc, char* argv[]) {
if (argc < 4) {
std::cout
<< "Usage: infer_demo path/to/model_dir path/to/video frame number run_option, "
"e.g ./infer_model ./vsr_model_dir ./person.mp4 0 2"
<< std::endl;
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
"with gpu; 2: run with gpu and use tensorrt backend."
<< std::endl;
return -1;
}
int frame_num = 2;
if (argc == 5) {
frame_num = std::atoi(argv[4]);
}
if (std::atoi(argv[3]) == 0) {
CpuInfer(argv[1], argv[2], frame_num);
} else if (std::atoi(argv[3]) == 1) {
GpuInfer(argv[1], argv[2], frame_num);
} else if (std::atoi(argv[3]) == 2) {
TrtInfer(argv[1], argv[2], frame_num);
}
return 0;
}