mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00
[Model] add vsr serials models (#518)
* [Model] add vsr serials models Signed-off-by: ChaoII <849453582@qq.com> * [Model] add vsr serials models Signed-off-by: ChaoII <849453582@qq.com> * fix build problem Signed-off-by: ChaoII <849453582@qq.com> * fix code style Signed-off-by: ChaoII <849453582@qq.com> * modify according to review suggestions Signed-off-by: ChaoII <849453582@qq.com> * modify vsr trt example Signed-off-by: ChaoII <849453582@qq.com> * update sr directory * fix BindPPSR * add doxygen comment * add sr unit test * update model file url Signed-off-by: ChaoII <849453582@qq.com> Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
14
examples/vision/sr/basicvsr/cpp/CMakeLists.txt
Normal file
14
examples/vision/sr/basicvsr/cpp/CMakeLists.txt
Normal file
@@ -0,0 +1,14 @@
|
||||
PROJECT(infer_demo C CXX)
|
||||
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
|
||||
|
||||
# 指定下载解压后的fastdeploy库路径
|
||||
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
|
||||
|
||||
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
|
||||
|
||||
# 添加FastDeploy依赖头文件
|
||||
include_directories(${FASTDEPLOY_INCS})
|
||||
|
||||
add_executable(infer_demo ${PROJECT_SOURCE_DIR}/infer.cc)
|
||||
# 添加FastDeploy库依赖
|
||||
target_link_libraries(infer_demo ${FASTDEPLOY_LIBS})
|
74
examples/vision/sr/basicvsr/cpp/README.md
Normal file
74
examples/vision/sr/basicvsr/cpp/README.md
Normal file
@@ -0,0 +1,74 @@
|
||||
# BasicVSR C++部署示例
|
||||
|
||||
本目录下提供`infer.cc`快速完成BasicVSR在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
|
||||
|
||||
在部署前,需确认以下两个步骤
|
||||
|
||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
以Linux上BasicVSR推理为例,在本目录执行如下命令即可完成编译测试(如若只需在CPU上部署,可在[Fastdeploy C++预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md/CPP_prebuilt_libraries.md)下载CPU推理库)
|
||||
|
||||
```bash
|
||||
#下载SDK,编译模型examples代码(SDK中包含了examples代码)
|
||||
# fastdeploy版本 >= 0.7.0
|
||||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz
|
||||
tar xvf fastdeploy-linux-x64-gpu-0.7.0.tgz
|
||||
cd fastdeploy-linux-x64-gpu-0.7.0/examples/vision/sr/basicvsr/cpp/
|
||||
mkdir build && cd build
|
||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.7.0
|
||||
make -j
|
||||
|
||||
# 下载BasicVSR模型文件和测试视频
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/BasicVSR_reds_x4.tar
|
||||
tar -xvf BasicVSR_reds_x4.tar
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/vsr_src.mp4
|
||||
|
||||
|
||||
# CPU推理
|
||||
./infer_demo BasicVSR_reds_x4 vsr_src.mp4 0 2
|
||||
# GPU推理
|
||||
./infer_demo BasicVSR_reds_x4 vsr_src.mp4 1 2
|
||||
# GPU上TensorRT推理
|
||||
./infer_demo BasicVSR_reds_x4 vsr_src.mp4 2 2
|
||||
```
|
||||
|
||||
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||||
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
|
||||
|
||||
## BasicVSR C++接口
|
||||
|
||||
### BasicVSR类
|
||||
|
||||
```c++
|
||||
fastdeploy::vision::sr::BasicVSR(
|
||||
const string& model_file,
|
||||
const string& params_file = "",
|
||||
const RuntimeOption& runtime_option = RuntimeOption(),
|
||||
const ModelFormat& model_format = ModelFormat::PADDLE)
|
||||
```
|
||||
|
||||
BasicVSR模型加载和初始化,其中model_file为导出的Paddle模型格式。
|
||||
|
||||
**参数**
|
||||
|
||||
> * **model_file**(str): 模型文件路径
|
||||
> * **params_file**(str): 参数文件路径
|
||||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||||
> * **model_format**(ModelFormat): 模型格式,默认为Paddle格式
|
||||
|
||||
#### Predict函数
|
||||
|
||||
> ```c++
|
||||
> BasicVSR::Predict(std::vector<cv::Mat>& imgs, std::vector<cv::Mat>& results)
|
||||
> ```
|
||||
>
|
||||
> 模型预测接口,输入图像直接输出检测结果。
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
> > * **imgs**: 输入视频帧序列,注意需为HWC,BGR格式
|
||||
> > * **results**: 视频超分结果,超分后的视频帧序列
|
||||
|
||||
- [模型介绍](../../)
|
||||
- [Python部署](../python)
|
||||
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
|
297
examples/vision/sr/basicvsr/cpp/infer.cc
Normal file
297
examples/vision/sr/basicvsr/cpp/infer.cc
Normal file
@@ -0,0 +1,297 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision.h"
|
||||
|
||||
#ifdef WIN32
|
||||
const char sep = '\\';
|
||||
#else
|
||||
const char sep = '/';
|
||||
#endif
|
||||
|
||||
void CpuInfer(const std::string& model_dir,
|
||||
const std::string& video_file, int frame_num) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto model = fastdeploy::vision::sr::BasicVSR(model_file, params_file);
|
||||
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
// note: input/output shape is [b, n, c, h, w] (n = frame_nums; b=1(default))
|
||||
// b and n is dependent on export model shape
|
||||
// see https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/zh_CN/tutorials/video_super_resolution.md
|
||||
cv::VideoCapture capture;
|
||||
// change your save video path
|
||||
std::string video_out_name = "output.mp4";
|
||||
capture.open(video_file);
|
||||
if (!capture.isOpened())
|
||||
{
|
||||
std::cout<<"can not open video "<<std::endl;
|
||||
return;
|
||||
}
|
||||
// Get Video info :fps, frame count
|
||||
// it used 4.x version of opencv below
|
||||
// notice your opencv version and method of api.
|
||||
int video_fps = static_cast<int>(capture.get(cv::CAP_PROP_FPS));
|
||||
int video_frame_count = static_cast<int>(capture.get(cv::CAP_PROP_FRAME_COUNT));
|
||||
// Set fixed size for output frame, only for msvsr model
|
||||
int out_width = 1280;
|
||||
int out_height = 720;
|
||||
std::cout << "fps: " << video_fps << "\tframe_count: " << video_frame_count << std::endl;
|
||||
|
||||
// Create VideoWriter for output
|
||||
cv::VideoWriter video_out;
|
||||
std::string video_out_path("./");
|
||||
video_out_path += video_out_name;
|
||||
int fcc = cv::VideoWriter::fourcc('m', 'p', '4', 'v');
|
||||
video_out.open(video_out_path, fcc, video_fps, cv::Size(out_width, out_height), true);
|
||||
if (!video_out.isOpened())
|
||||
{
|
||||
std::cout << "create video writer failed!" << std::endl;
|
||||
return;
|
||||
}
|
||||
// Capture all frames and do inference
|
||||
cv::Mat frame;
|
||||
int frame_id = 0;
|
||||
bool reach_end = false;
|
||||
while (capture.isOpened())
|
||||
{
|
||||
std::vector<cv::Mat> imgs;
|
||||
for (int i = 0; i < frame_num; i++)
|
||||
{
|
||||
capture.read(frame);
|
||||
if (!frame.empty())
|
||||
{
|
||||
imgs.push_back(frame);
|
||||
}else{
|
||||
reach_end = true;
|
||||
}
|
||||
}
|
||||
if (reach_end)
|
||||
{
|
||||
break;
|
||||
}
|
||||
std::vector<cv::Mat> results;
|
||||
model.Predict(imgs, results);
|
||||
for (auto &item : results)
|
||||
{
|
||||
// cv::imshow("13",item);
|
||||
// cv::waitKey(30);
|
||||
video_out.write(item);
|
||||
std::cout << "Processing frame: "<< frame_id << std::endl;
|
||||
frame_id += 1;
|
||||
}
|
||||
}
|
||||
std::cout << "inference finished, output video saved at " << video_out_path << std::endl;
|
||||
capture.release();
|
||||
video_out.release();
|
||||
}
|
||||
|
||||
void GpuInfer(const std::string& model_dir,
|
||||
const std::string& video_file, int frame_num) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseGpu();
|
||||
auto model = fastdeploy::vision::sr::BasicVSR(
|
||||
model_file, params_file, option);
|
||||
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
// note: input/output shape is [b, n, c, h, w] (n = frame_nums; b=1(default))
|
||||
// b and n is dependent on export model shape
|
||||
// see https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/zh_CN/tutorials/video_super_resolution.md
|
||||
cv::VideoCapture capture;
|
||||
// change your save video path
|
||||
std::string video_out_name = "output.mp4";
|
||||
capture.open(video_file);
|
||||
if (!capture.isOpened())
|
||||
{
|
||||
std::cout<<"can not open video "<<std::endl;
|
||||
return;
|
||||
}
|
||||
// Get Video info :fps, frame count
|
||||
int video_fps = static_cast<int>(capture.get(cv::CAP_PROP_FPS));
|
||||
int video_frame_count = static_cast<int>(capture.get(cv::CAP_PROP_FRAME_COUNT));
|
||||
// Set fixed size for output frame, only for msvsr model
|
||||
int out_width = 1280;
|
||||
int out_height = 720;
|
||||
std::cout << "fps: " << video_fps << "\tframe_count: " << video_frame_count << std::endl;
|
||||
|
||||
// Create VideoWriter for output
|
||||
cv::VideoWriter video_out;
|
||||
std::string video_out_path("./");
|
||||
video_out_path += video_out_name;
|
||||
int fcc = cv::VideoWriter::fourcc('m', 'p', '4', 'v');
|
||||
video_out.open(video_out_path, fcc, video_fps, cv::Size(out_width, out_height), true);
|
||||
if (!video_out.isOpened())
|
||||
{
|
||||
std::cout << "create video writer failed!" << std::endl;
|
||||
return;
|
||||
}
|
||||
// Capture all frames and do inference
|
||||
cv::Mat frame;
|
||||
int frame_id = 0;
|
||||
bool reach_end = false;
|
||||
while (capture.isOpened())
|
||||
{
|
||||
std::vector<cv::Mat> imgs;
|
||||
for (int i = 0; i < frame_num; i++)
|
||||
{
|
||||
capture.read(frame);
|
||||
if (!frame.empty())
|
||||
{
|
||||
imgs.push_back(frame);
|
||||
}else{
|
||||
reach_end = true;
|
||||
}
|
||||
}
|
||||
if (reach_end)
|
||||
{
|
||||
break;
|
||||
}
|
||||
std::vector<cv::Mat> results;
|
||||
model.Predict(imgs, results);
|
||||
for (auto &item : results)
|
||||
{
|
||||
// cv::imshow("13",item);
|
||||
// cv::waitKey(30);
|
||||
video_out.write(item);
|
||||
std::cout << "Processing frame: "<< frame_id << std::endl;
|
||||
frame_id += 1;
|
||||
}
|
||||
}
|
||||
std::cout << "inference finished, output video saved at " << video_out_path << std::endl;
|
||||
capture.release();
|
||||
video_out.release();
|
||||
}
|
||||
|
||||
void TrtInfer(const std::string& model_dir,
|
||||
const std::string& video_file, int frame_num) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseGpu();
|
||||
option.UseTrtBackend();
|
||||
// use paddle-TRT
|
||||
option.EnablePaddleToTrt();
|
||||
auto model = fastdeploy::vision::sr::BasicVSR(
|
||||
model_file, params_file, option);
|
||||
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
// note: input/output shape is [b, n, c, h, w] (n = frame_nums; b=1(default))
|
||||
// b and n is dependent on export model shape
|
||||
// see https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/zh_CN/tutorials/video_super_resolution.md
|
||||
cv::VideoCapture capture;
|
||||
// change your save video path
|
||||
std::string video_out_name = "output.mp4";
|
||||
capture.open(video_file);
|
||||
if (!capture.isOpened())
|
||||
{
|
||||
std::cout<<"can not open video "<<std::endl;
|
||||
return;
|
||||
}
|
||||
// Get Video info :fps, frame count
|
||||
int video_fps = static_cast<int>(capture.get(cv::CAP_PROP_FPS));
|
||||
int video_frame_count = static_cast<int>(capture.get(cv::CAP_PROP_FRAME_COUNT));
|
||||
// Set fixed size for output frame, only for msvsr model
|
||||
//Note that the resolution between the size and the original input is consistent when the model is exported,
|
||||
// for example: [1,2,3,180,320], after 4x super separation [1,2,3,720,1080].
|
||||
//Therefore, it is very important to derive the model
|
||||
int out_width = 1280;
|
||||
int out_height = 720;
|
||||
std::cout << "fps: " << video_fps << "\tframe_count: " << video_frame_count << std::endl;
|
||||
|
||||
// Create VideoWriter for output
|
||||
cv::VideoWriter video_out;
|
||||
std::string video_out_path("./");
|
||||
video_out_path += video_out_name;
|
||||
int fcc = cv::VideoWriter::fourcc('m', 'p', '4', 'v');
|
||||
video_out.open(video_out_path, fcc, video_fps, cv::Size(out_width, out_height), true);
|
||||
if (!video_out.isOpened())
|
||||
{
|
||||
std::cout << "create video writer failed!" << std::endl;
|
||||
return;
|
||||
}
|
||||
// Capture all frames and do inference
|
||||
cv::Mat frame;
|
||||
int frame_id = 0;
|
||||
bool reach_end = false;
|
||||
while (capture.isOpened())
|
||||
{
|
||||
std::vector<cv::Mat> imgs;
|
||||
for (int i = 0; i < frame_num; i++)
|
||||
{
|
||||
capture.read(frame);
|
||||
if (!frame.empty())
|
||||
{
|
||||
imgs.push_back(frame);
|
||||
}else{
|
||||
reach_end = true;
|
||||
}
|
||||
}
|
||||
if (reach_end)
|
||||
{
|
||||
break;
|
||||
}
|
||||
std::vector<cv::Mat> results;
|
||||
model.Predict(imgs, results);
|
||||
for (auto &item : results)
|
||||
{
|
||||
// cv::imshow("13",item);
|
||||
// cv::waitKey(30);
|
||||
video_out.write(item);
|
||||
std::cout << "Processing frame: "<< frame_id << std::endl;
|
||||
frame_id += 1;
|
||||
}
|
||||
}
|
||||
std::cout << "inference finished, output video saved at " << video_out_path << std::endl;
|
||||
capture.release();
|
||||
video_out.release();
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
std::cout
|
||||
<< "Usage: infer_demo path/to/model_dir path/to/video frame number run_option, "
|
||||
"e.g ./infer_model ./vsr_model_dir ./person.mp4 0 2"
|
||||
<< std::endl;
|
||||
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
||||
"with gpu; 2: run with gpu and use tensorrt backend."
|
||||
<< std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
int frame_num = 2;
|
||||
if (argc == 5) {
|
||||
frame_num = std::atoi(argv[4]);
|
||||
}
|
||||
if (std::atoi(argv[3]) == 0) {
|
||||
CpuInfer(argv[1], argv[2], frame_num);
|
||||
} else if (std::atoi(argv[3]) == 1) {
|
||||
GpuInfer(argv[1], argv[2], frame_num);
|
||||
} else if (std::atoi(argv[3]) == 2) {
|
||||
TrtInfer(argv[1], argv[2], frame_num);
|
||||
}
|
||||
return 0;
|
||||
}
|
Reference in New Issue
Block a user