[Model] add vsr serials models (#518)

* [Model] add vsr serials models

Signed-off-by: ChaoII <849453582@qq.com>

* [Model] add vsr serials models

Signed-off-by: ChaoII <849453582@qq.com>

* fix build problem

Signed-off-by: ChaoII <849453582@qq.com>

* fix code style

Signed-off-by: ChaoII <849453582@qq.com>

* modify according to review suggestions

Signed-off-by: ChaoII <849453582@qq.com>

* modify vsr trt example

Signed-off-by: ChaoII <849453582@qq.com>

* update sr directory

* fix BindPPSR

* add doxygen comment

* add sr unit test

* update model file url

Signed-off-by: ChaoII <849453582@qq.com>
Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
ChaoII
2022-11-21 10:58:28 +08:00
committed by GitHub
parent 1ac54c96bd
commit c7ec14de95
40 changed files with 2526 additions and 8 deletions

View File

@@ -0,0 +1,14 @@
PROJECT(infer_demo C CXX)
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
# 指定下载解压后的fastdeploy库路径
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
# 添加FastDeploy依赖头文件
include_directories(${FASTDEPLOY_INCS})
add_executable(infer_demo ${PROJECT_SOURCE_DIR}/infer.cc)
# 添加FastDeploy库依赖
target_link_libraries(infer_demo ${FASTDEPLOY_LIBS})

View File

@@ -0,0 +1,74 @@
# BasicVSR C++部署示例
本目录下提供`infer.cc`快速完成BasicVSR在CPU/GPU以及GPU上通过TensorRT加速部署的示例。
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境下载预编译部署库和samples代码参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
以Linux上BasicVSR推理为例在本目录执行如下命令即可完成编译测试如若只需在CPU上部署可在[Fastdeploy C++预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md/CPP_prebuilt_libraries.md)下载CPU推理库
```bash
#下载SDK编译模型examples代码SDK中包含了examples代码
# fastdeploy版本 >= 0.7.0
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz
tar xvf fastdeploy-linux-x64-gpu-0.7.0.tgz
cd fastdeploy-linux-x64-gpu-0.7.0/examples/vision/sr/basicvsr/cpp/
mkdir build && cd build
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.7.0
make -j
# 下载BasicVSR模型文件和测试视频
wget https://bj.bcebos.com/paddlehub/fastdeploy/BasicVSR_reds_x4.tar
tar -xvf BasicVSR_reds_x4.tar
wget https://bj.bcebos.com/paddlehub/fastdeploy/vsr_src.mp4
# CPU推理
./infer_demo BasicVSR_reds_x4 vsr_src.mp4 0 2
# GPU推理
./infer_demo BasicVSR_reds_x4 vsr_src.mp4 1 2
# GPU上TensorRT推理
./infer_demo BasicVSR_reds_x4 vsr_src.mp4 2 2
```
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
## BasicVSR C++接口
### BasicVSR类
```c++
fastdeploy::vision::sr::BasicVSR(
const string& model_file,
const string& params_file = "",
const RuntimeOption& runtime_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE)
```
BasicVSR模型加载和初始化其中model_file为导出的Paddle模型格式。
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为Paddle格式
#### Predict函数
> ```c++
> BasicVSR::Predict(std::vector<cv::Mat>& imgs, std::vector<cv::Mat>& results)
> ```
>
> 模型预测接口,输入图像直接输出检测结果。
>
> **参数**
>
> > * **imgs**: 输入视频帧序列注意需为HWCBGR格式
> > * **results**: 视频超分结果,超分后的视频帧序列
- [模型介绍](../../)
- [Python部署](../python)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)

View File

@@ -0,0 +1,297 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
#ifdef WIN32
const char sep = '\\';
#else
const char sep = '/';
#endif
void CpuInfer(const std::string& model_dir,
const std::string& video_file, int frame_num) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto model = fastdeploy::vision::sr::BasicVSR(model_file, params_file);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
// note: input/output shape is [b, n, c, h, w] (n = frame_nums; b=1(default))
// b and n is dependent on export model shape
// see https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/zh_CN/tutorials/video_super_resolution.md
cv::VideoCapture capture;
// change your save video path
std::string video_out_name = "output.mp4";
capture.open(video_file);
if (!capture.isOpened())
{
std::cout<<"can not open video "<<std::endl;
return;
}
// Get Video info :fps, frame count
// it used 4.x version of opencv below
// notice your opencv version and method of api.
int video_fps = static_cast<int>(capture.get(cv::CAP_PROP_FPS));
int video_frame_count = static_cast<int>(capture.get(cv::CAP_PROP_FRAME_COUNT));
// Set fixed size for output frame, only for msvsr model
int out_width = 1280;
int out_height = 720;
std::cout << "fps: " << video_fps << "\tframe_count: " << video_frame_count << std::endl;
// Create VideoWriter for output
cv::VideoWriter video_out;
std::string video_out_path("./");
video_out_path += video_out_name;
int fcc = cv::VideoWriter::fourcc('m', 'p', '4', 'v');
video_out.open(video_out_path, fcc, video_fps, cv::Size(out_width, out_height), true);
if (!video_out.isOpened())
{
std::cout << "create video writer failed!" << std::endl;
return;
}
// Capture all frames and do inference
cv::Mat frame;
int frame_id = 0;
bool reach_end = false;
while (capture.isOpened())
{
std::vector<cv::Mat> imgs;
for (int i = 0; i < frame_num; i++)
{
capture.read(frame);
if (!frame.empty())
{
imgs.push_back(frame);
}else{
reach_end = true;
}
}
if (reach_end)
{
break;
}
std::vector<cv::Mat> results;
model.Predict(imgs, results);
for (auto &item : results)
{
// cv::imshow("13",item);
// cv::waitKey(30);
video_out.write(item);
std::cout << "Processing frame: "<< frame_id << std::endl;
frame_id += 1;
}
}
std::cout << "inference finished, output video saved at " << video_out_path << std::endl;
capture.release();
video_out.release();
}
void GpuInfer(const std::string& model_dir,
const std::string& video_file, int frame_num) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
auto model = fastdeploy::vision::sr::BasicVSR(
model_file, params_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
// note: input/output shape is [b, n, c, h, w] (n = frame_nums; b=1(default))
// b and n is dependent on export model shape
// see https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/zh_CN/tutorials/video_super_resolution.md
cv::VideoCapture capture;
// change your save video path
std::string video_out_name = "output.mp4";
capture.open(video_file);
if (!capture.isOpened())
{
std::cout<<"can not open video "<<std::endl;
return;
}
// Get Video info :fps, frame count
int video_fps = static_cast<int>(capture.get(cv::CAP_PROP_FPS));
int video_frame_count = static_cast<int>(capture.get(cv::CAP_PROP_FRAME_COUNT));
// Set fixed size for output frame, only for msvsr model
int out_width = 1280;
int out_height = 720;
std::cout << "fps: " << video_fps << "\tframe_count: " << video_frame_count << std::endl;
// Create VideoWriter for output
cv::VideoWriter video_out;
std::string video_out_path("./");
video_out_path += video_out_name;
int fcc = cv::VideoWriter::fourcc('m', 'p', '4', 'v');
video_out.open(video_out_path, fcc, video_fps, cv::Size(out_width, out_height), true);
if (!video_out.isOpened())
{
std::cout << "create video writer failed!" << std::endl;
return;
}
// Capture all frames and do inference
cv::Mat frame;
int frame_id = 0;
bool reach_end = false;
while (capture.isOpened())
{
std::vector<cv::Mat> imgs;
for (int i = 0; i < frame_num; i++)
{
capture.read(frame);
if (!frame.empty())
{
imgs.push_back(frame);
}else{
reach_end = true;
}
}
if (reach_end)
{
break;
}
std::vector<cv::Mat> results;
model.Predict(imgs, results);
for (auto &item : results)
{
// cv::imshow("13",item);
// cv::waitKey(30);
video_out.write(item);
std::cout << "Processing frame: "<< frame_id << std::endl;
frame_id += 1;
}
}
std::cout << "inference finished, output video saved at " << video_out_path << std::endl;
capture.release();
video_out.release();
}
void TrtInfer(const std::string& model_dir,
const std::string& video_file, int frame_num) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
option.UseTrtBackend();
// use paddle-TRT
option.EnablePaddleToTrt();
auto model = fastdeploy::vision::sr::BasicVSR(
model_file, params_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
// note: input/output shape is [b, n, c, h, w] (n = frame_nums; b=1(default))
// b and n is dependent on export model shape
// see https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/zh_CN/tutorials/video_super_resolution.md
cv::VideoCapture capture;
// change your save video path
std::string video_out_name = "output.mp4";
capture.open(video_file);
if (!capture.isOpened())
{
std::cout<<"can not open video "<<std::endl;
return;
}
// Get Video info :fps, frame count
int video_fps = static_cast<int>(capture.get(cv::CAP_PROP_FPS));
int video_frame_count = static_cast<int>(capture.get(cv::CAP_PROP_FRAME_COUNT));
// Set fixed size for output frame, only for msvsr model
//Note that the resolution between the size and the original input is consistent when the model is exported,
// for example: [1,2,3,180,320], after 4x super separation [1,2,3,720,1080].
//Therefore, it is very important to derive the model
int out_width = 1280;
int out_height = 720;
std::cout << "fps: " << video_fps << "\tframe_count: " << video_frame_count << std::endl;
// Create VideoWriter for output
cv::VideoWriter video_out;
std::string video_out_path("./");
video_out_path += video_out_name;
int fcc = cv::VideoWriter::fourcc('m', 'p', '4', 'v');
video_out.open(video_out_path, fcc, video_fps, cv::Size(out_width, out_height), true);
if (!video_out.isOpened())
{
std::cout << "create video writer failed!" << std::endl;
return;
}
// Capture all frames and do inference
cv::Mat frame;
int frame_id = 0;
bool reach_end = false;
while (capture.isOpened())
{
std::vector<cv::Mat> imgs;
for (int i = 0; i < frame_num; i++)
{
capture.read(frame);
if (!frame.empty())
{
imgs.push_back(frame);
}else{
reach_end = true;
}
}
if (reach_end)
{
break;
}
std::vector<cv::Mat> results;
model.Predict(imgs, results);
for (auto &item : results)
{
// cv::imshow("13",item);
// cv::waitKey(30);
video_out.write(item);
std::cout << "Processing frame: "<< frame_id << std::endl;
frame_id += 1;
}
}
std::cout << "inference finished, output video saved at " << video_out_path << std::endl;
capture.release();
video_out.release();
}
int main(int argc, char* argv[]) {
if (argc < 4) {
std::cout
<< "Usage: infer_demo path/to/model_dir path/to/video frame number run_option, "
"e.g ./infer_model ./vsr_model_dir ./person.mp4 0 2"
<< std::endl;
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
"with gpu; 2: run with gpu and use tensorrt backend."
<< std::endl;
return -1;
}
int frame_num = 2;
if (argc == 5) {
frame_num = std::atoi(argv[4]);
}
if (std::atoi(argv[3]) == 0) {
CpuInfer(argv[1], argv[2], frame_num);
} else if (std::atoi(argv[3]) == 1) {
GpuInfer(argv[1], argv[2], frame_num);
} else if (std::atoi(argv[3]) == 2) {
TrtInfer(argv[1], argv[2], frame_num);
}
return 0;
}