mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-08 10:00:29 +08:00
Add RKYOLOv5 RKYOLOX RKYOLOV7 (#709)
* 更正代码格式 * 更正代码格式 * 修复语法错误 * fix rk error * update * update * update * update * update * update * update Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
95
fastdeploy/vision/detection/contrib/rknpu2/rkyolo_pybind.cc
Executable file
95
fastdeploy/vision/detection/contrib/rknpu2/rkyolo_pybind.cc
Executable file
@@ -0,0 +1,95 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/pybind/main.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
void BindRKYOLO(pybind11::module& m) {
|
||||
pybind11::class_<vision::detection::RKYOLOPreprocessor>(
|
||||
m, "RKYOLOPreprocessor")
|
||||
.def(pybind11::init<>())
|
||||
.def("run", [](vision::detection::RKYOLOPreprocessor& self,
|
||||
std::vector<pybind11::array>& im_list) {
|
||||
std::vector<vision::FDMat> images;
|
||||
for (size_t i = 0; i < im_list.size(); ++i) {
|
||||
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
|
||||
}
|
||||
std::vector<FDTensor> outputs;
|
||||
if (!self.Run(&images, &outputs)) {
|
||||
throw std::runtime_error("Failed to preprocess the input data in PaddleClasPreprocessor.");
|
||||
}
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
outputs[i].StopSharing();
|
||||
}
|
||||
return outputs;
|
||||
})
|
||||
.def_property("size", &vision::detection::RKYOLOPreprocessor::GetSize,
|
||||
&vision::detection::RKYOLOPreprocessor::SetSize)
|
||||
.def_property("padding_value", &vision::detection::RKYOLOPreprocessor::GetPaddingValue,
|
||||
&vision::detection::RKYOLOPreprocessor::SetPaddingValue)
|
||||
.def_property("is_scale_up", &vision::detection::RKYOLOPreprocessor::GetScaleUp,
|
||||
&vision::detection::RKYOLOPreprocessor::SetScaleUp);
|
||||
|
||||
pybind11::class_<vision::detection::RKYOLOPostprocessor>(
|
||||
m, "RKYOLOPostprocessor")
|
||||
.def(pybind11::init<>())
|
||||
.def("run", [](vision::detection::RKYOLOPostprocessor& self,
|
||||
std::vector<FDTensor>& inputs) {
|
||||
std::vector<vision::DetectionResult> results;
|
||||
if (!self.Run(inputs, &results)) {
|
||||
throw std::runtime_error("Failed to postprocess the runtime result in RKYOLOV5Postprocessor.");
|
||||
}
|
||||
return results;
|
||||
})
|
||||
.def("run", [](vision::detection::RKYOLOPostprocessor& self,
|
||||
std::vector<pybind11::array>& input_array) {
|
||||
std::vector<vision::DetectionResult> results;
|
||||
std::vector<FDTensor> inputs;
|
||||
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
|
||||
if (!self.Run(inputs, &results)) {
|
||||
throw std::runtime_error("Failed to postprocess the runtime result in RKYOLOV5Postprocessor.");
|
||||
}
|
||||
return results;
|
||||
})
|
||||
.def_property("conf_threshold", &vision::detection::RKYOLOPostprocessor::GetConfThreshold,
|
||||
&vision::detection::RKYOLOPostprocessor::SetConfThreshold)
|
||||
.def_property("nms_threshold", &vision::detection::RKYOLOPostprocessor::GetNMSThreshold,
|
||||
&vision::detection::RKYOLOPostprocessor::SetNMSThreshold);
|
||||
|
||||
pybind11::class_<vision::detection::RKYOLOV5, FastDeployModel>(m, "RKYOLOV5")
|
||||
.def(pybind11::init<std::string,
|
||||
RuntimeOption,
|
||||
ModelFormat>())
|
||||
.def("predict",
|
||||
[](vision::detection::RKYOLOV5& self,
|
||||
pybind11::array& data) {
|
||||
auto mat = PyArrayToCvMat(data);
|
||||
vision::DetectionResult res;
|
||||
self.Predict(mat, &res);
|
||||
return res;
|
||||
})
|
||||
.def("batch_predict", [](vision::detection::RKYOLOV5& self,
|
||||
std::vector<pybind11::array>& data) {
|
||||
std::vector<cv::Mat> images;
|
||||
for (size_t i = 0; i < data.size(); ++i) {
|
||||
images.push_back(PyArrayToCvMat(data[i]));
|
||||
}
|
||||
std::vector<vision::DetectionResult> results;
|
||||
self.BatchPredict(images, &results);
|
||||
return results;
|
||||
})
|
||||
.def_property_readonly("preprocessor", &vision::detection::RKYOLOV5::GetPreprocessor)
|
||||
.def_property_readonly("postprocessor", &vision::detection::RKYOLOV5::GetPostprocessor);
|
||||
}
|
||||
} // namespace fastdeploy
|
Reference in New Issue
Block a user