[Feature][MTP]Support new mtp (#3656)

* update multi-draft-token strategy

* fix format

* support hybrid mtp with ngram speculative decoding method
This commit is contained in:
freeliuzc
2025-08-27 19:38:26 +08:00
committed by GitHub
parent 62659a7a73
commit c753f1fc9e
20 changed files with 501 additions and 579 deletions

View File

@@ -26,8 +26,10 @@ __global__ void process_splitwise_prefill(
int64_t* step_idx,
bool* not_need_stop,
bool* batch_drop,
int64_t* pre_ids,
const int64_t* accept_tokens,
const int* accept_num,
const int* base_model_seq_lens_this_time,
const int* base_model_seq_lens_encoder,
const int* base_model_seq_lens_decoder,
const int64_t* base_model_step_idx,
@@ -35,11 +37,12 @@ __global__ void process_splitwise_prefill(
const bool* base_model_is_block_step,
int64_t* base_model_draft_tokens,
const int bsz,
const int max_draft_token,
const int num_model_step,
const int accept_tokens_len,
const int draft_tokens_len,
const int input_ids_len,
const int base_model_draft_tokens_len) {
const int base_model_draft_tokens_len,
const int pre_ids_len) {
typedef cub::BlockReduce<int64_t, THREADBLOCK_SIZE> BlockReduce;
__shared__ typename BlockReduce::TempStorage temp_storage;
int64_t not_stop_flag = 0;
@@ -92,8 +95,10 @@ __global__ void draft_model_preprocess_kernel(
int64_t* step_idx,
bool* not_need_stop,
bool* batch_drop,
int64_t* pre_ids,
const int64_t* accept_tokens,
const int* accept_num,
const int* base_model_seq_lens_this_time,
const int* base_model_seq_lens_encoder,
const int* base_model_seq_lens_decoder,
const int64_t* base_model_step_idx,
@@ -101,11 +106,12 @@ __global__ void draft_model_preprocess_kernel(
const bool* base_model_is_block_step,
int64_t* base_model_draft_tokens,
const int bsz,
const int max_draft_token,
const int num_model_step,
const int accept_tokens_len,
const int draft_tokens_len,
const int input_ids_len,
const int base_model_draft_tokens_len) {
const int base_model_draft_tokens_len,
const int pre_ids_len) {
typedef cub::BlockReduce<int64_t, THREADBLOCK_SIZE> BlockReduce;
__shared__ typename BlockReduce::TempStorage temp_storage;
int64_t not_stop_flag = 0;
@@ -113,13 +119,16 @@ __global__ void draft_model_preprocess_kernel(
int tid = threadIdx.x;
if (tid < bsz) {
auto base_model_step_idx_now = base_model_step_idx[tid];
const int32_t base_model_step_idx_now = base_model_step_idx[tid];
auto* accept_tokens_now = accept_tokens + tid * accept_tokens_len;
auto* draft_tokens_now = draft_tokens + tid * draft_tokens_len;
auto accept_num_now = accept_num[tid];
const int32_t accept_num_now = accept_num[tid];
auto* input_ids_now = input_ids + tid * input_ids_len;
auto* base_model_draft_tokens_now =
base_model_draft_tokens + tid * base_model_draft_tokens_len;
auto base_model_seq_len_decoder = base_model_seq_lens_decoder[tid];
const int32_t base_model_seq_len_this_time = base_model_seq_lens_this_time[tid];
auto* pre_ids_now = pre_ids + tid * pre_ids_len;
#pragma unroll
for (int i = 1; i < base_model_draft_tokens_len; i++) {
base_model_draft_tokens_now[i] = -1;
@@ -133,14 +142,12 @@ __global__ void draft_model_preprocess_kernel(
if (!(base_model_stop_flags[tid] || batch_drop[tid])) {
not_stop_flag = 1;
// 1. first token
if (base_model_step_idx_now == 0) {
seq_lens_this_time[tid] = 0;
not_stop_flag = 0;
} else if (seq_lens_encoder[tid] > 0) {
if (seq_lens_encoder[tid] > 0) {
// Can be extended to first few tokens
int seq_len_encoder = seq_lens_encoder[tid];
stop_flags[tid] = false;
int64_t base_model_first_token = accept_tokens_now[0];
pre_ids_now[0] = base_model_first_token;
int position = seq_len_encoder;
if (TRCUNCATE_FIRST_TOKEN) {
input_ids_now[position - 1] = base_model_first_token;
@@ -149,24 +156,24 @@ __global__ void draft_model_preprocess_kernel(
input_ids_now[position] = base_model_first_token;
seq_lens_this_time[tid] = seq_len_encoder + 1;
}
} else if (accept_num_now <=
max_draft_token) /*Accept partial draft tokens*/ {
// Base Model reject stop
} else {
if (stop_flags[tid]) {
stop_flags[tid] = false;
seq_lens_decoder[tid] = base_model_seq_lens_decoder[tid];
step_idx[tid] = base_model_step_idx[tid];
// TODO: check
seq_lens_decoder[tid] = base_model_seq_len_decoder - base_model_seq_len_this_time;
step_idx[tid] = base_model_step_idx[tid] - base_model_seq_len_this_time;
} else {
seq_lens_decoder[tid] -= max_draft_token - accept_num_now;
step_idx[tid] -= max_draft_token - accept_num_now;
// 2: Last base model generated token and first MTP token
seq_lens_decoder[tid] -= num_model_step - 1;
step_idx[tid] -= num_model_step - 1;
}
int64_t modified_token = accept_tokens_now[accept_num_now - 1];
draft_tokens_now[0] = modified_token;
seq_lens_this_time[tid] = 1;
} else /*Accept all draft tokens*/ {
draft_tokens_now[1] = accept_tokens_now[max_draft_token];
seq_lens_this_time[tid] = 2;
for (int i = 0; i < accept_num_now; i++) {
draft_tokens_now[i] = accept_tokens_now[i];
const int pre_id_pos = base_model_step_idx[tid] - (accept_num_now - i);
const int64_t accept_token = accept_tokens_now[i];
pre_ids_now[pre_id_pos] = accept_token;
}
seq_lens_this_time[tid] = accept_num_now;
}
} else {
stop_flags[tid] = true;
@@ -194,8 +201,10 @@ void DispatchRunner(
int64_t* step_idx,
bool* not_need_stop,
bool* batch_drop,
int64_t* pre_ids,
const int64_t* accept_tokens,
const int* accept_num,
const int* base_model_seq_lens_this_time,
const int* base_model_seq_lens_encoder,
const int* base_model_seq_lens_decoder,
const int64_t* base_model_step_idx,
@@ -203,11 +212,12 @@ void DispatchRunner(
const bool* base_model_is_block_step,
int64_t* base_model_draft_tokens,
const int bsz,
const int max_draft_token,
const int num_model_step,
const int accept_tokens_len,
const int draft_tokens_len,
const int input_ids_len,
const int base_model_draft_tokens_len,
const int pre_ids_len,
const bool splitwise_prefill) {
constexpr int BlockSize = 512;
if (splitwise_prefill) {
@@ -222,8 +232,10 @@ void DispatchRunner(
step_idx,
not_need_stop,
batch_drop,
pre_ids,
accept_tokens,
accept_num,
base_model_seq_lens_this_time,
base_model_seq_lens_encoder,
base_model_seq_lens_decoder,
base_model_step_idx,
@@ -231,11 +243,12 @@ void DispatchRunner(
base_model_is_block_step,
base_model_draft_tokens,
bsz,
max_draft_token,
num_model_step,
accept_tokens_len,
draft_tokens_len,
input_ids_len,
base_model_draft_tokens_len);
base_model_draft_tokens_len,
pre_ids_len);
} else {
draft_model_preprocess_kernel<BlockSize, TRCUNCATE_FIRST_TOKEN>
<<<1, BlockSize, 0, stream>>>(
@@ -248,8 +261,10 @@ void DispatchRunner(
step_idx,
not_need_stop,
batch_drop,
pre_ids,
accept_tokens,
accept_num,
base_model_seq_lens_this_time,
base_model_seq_lens_encoder,
base_model_seq_lens_decoder,
base_model_step_idx,
@@ -257,11 +272,12 @@ void DispatchRunner(
base_model_is_block_step,
base_model_draft_tokens,
bsz,
max_draft_token,
num_model_step,
accept_tokens_len,
draft_tokens_len,
input_ids_len,
base_model_draft_tokens_len);
base_model_draft_tokens_len,
pre_ids_len);
}
}
@@ -276,8 +292,10 @@ void DispatchTokenMode(
int64_t* step_idx,
bool* not_need_stop,
bool* batch_drop,
int64_t* pre_ids,
const int64_t* accept_tokens,
const int* accept_num,
const int* base_model_seq_lens_this_time,
const int* base_model_seq_lens_encoder,
const int* base_model_seq_lens_decoder,
const int64_t* base_model_step_idx,
@@ -285,11 +303,12 @@ void DispatchTokenMode(
const bool* base_model_is_block_step,
int64_t* base_model_draft_tokens,
const int bsz,
const int max_draft_token,
const int num_model_step,
const int accept_tokens_len,
const int draft_tokens_len,
const int input_ids_len,
const int base_model_draft_tokens_len,
const int pre_ids_len,
const bool truncate_first_token,
const bool splitwise_prefill) {
if (truncate_first_token) {
@@ -304,8 +323,10 @@ void DispatchTokenMode(
step_idx,
not_need_stop,
batch_drop,
pre_ids,
accept_tokens,
accept_num,
base_model_seq_lens_this_time,
base_model_seq_lens_encoder,
base_model_seq_lens_decoder,
base_model_step_idx,
@@ -313,11 +334,12 @@ void DispatchTokenMode(
base_model_is_block_step,
base_model_draft_tokens,
bsz,
max_draft_token,
num_model_step,
accept_tokens_len,
draft_tokens_len,
input_ids_len,
base_model_draft_tokens_len,
pre_ids_len,
splitwise_prefill
);
} else {
@@ -332,8 +354,10 @@ void DispatchTokenMode(
step_idx,
not_need_stop,
batch_drop,
pre_ids,
accept_tokens,
accept_num,
base_model_seq_lens_this_time,
base_model_seq_lens_encoder,
base_model_seq_lens_decoder,
base_model_step_idx,
@@ -341,11 +365,12 @@ void DispatchTokenMode(
base_model_is_block_step,
base_model_draft_tokens,
bsz,
max_draft_token,
num_model_step,
accept_tokens_len,
draft_tokens_len,
input_ids_len,
base_model_draft_tokens_len,
pre_ids_len,
splitwise_prefill
);
}
@@ -363,21 +388,24 @@ void DraftModelPreprocess(const paddle::Tensor& draft_tokens,
const paddle::Tensor& step_idx,
const paddle::Tensor& not_need_stop,
const paddle::Tensor& batch_drop,
const paddle::Tensor& pre_ids,
const paddle::Tensor& accept_tokens,
const paddle::Tensor& accept_num,
const paddle::Tensor& base_model_seq_lens_this_time,
const paddle::Tensor& base_model_seq_lens_encoder,
const paddle::Tensor& base_model_seq_lens_decoder,
const paddle::Tensor& base_model_step_idx,
const paddle::Tensor& base_model_stop_flags,
const paddle::Tensor& base_model_is_block_step,
const paddle::Tensor& base_model_draft_tokens,
const int max_draft_token,
const int num_model_step,
const bool truncate_first_token,
const bool splitwise_prefill) {
int real_bsz = seq_lens_this_time.shape()[0];
int accept_tokens_len = accept_tokens.shape()[1];
int input_ids_len = input_ids.shape()[1];
int draft_tokens_len = draft_tokens.shape()[1];
int pre_ids_len = pre_ids.shape()[1];
auto cu_stream = seq_lens_this_time.stream();
constexpr int BlockSize = 512;
int base_model_draft_tokens_len = base_model_draft_tokens.shape()[1];
@@ -395,8 +423,10 @@ void DraftModelPreprocess(const paddle::Tensor& draft_tokens,
const_cast<int64_t*>(step_idx.data<int64_t>()),
const_cast<bool*>(not_need_stop_gpu.data<bool>()),
const_cast<bool*>(batch_drop.data<bool>()),
const_cast<int64_t*>(pre_ids.data<int64_t>()),
accept_tokens.data<int64_t>(),
accept_num.data<int>(),
base_model_seq_lens_this_time.data<int>(),
base_model_seq_lens_encoder.data<int>(),
base_model_seq_lens_decoder.data<int>(),
base_model_step_idx.data<int64_t>(),
@@ -404,11 +434,12 @@ void DraftModelPreprocess(const paddle::Tensor& draft_tokens,
base_model_is_block_step.data<bool>(),
const_cast<int64_t*>(base_model_draft_tokens.data<int64_t>()),
real_bsz,
max_draft_token,
num_model_step,
accept_tokens_len,
draft_tokens_len,
input_ids_len,
base_model_draft_tokens_len,
pre_ids_len,
truncate_first_token,
splitwise_prefill);
@@ -429,8 +460,10 @@ PD_BUILD_STATIC_OP(draft_model_preprocess)
"step_idx",
"not_need_stop",
"batch_drop",
"pre_ids",
"accept_tokens",
"accept_num",
"base_model_seq_lens_this_time",
"base_model_seq_lens_encoder",
"base_model_seq_lens_decoder",
"base_model_step_idx",
@@ -445,8 +478,9 @@ PD_BUILD_STATIC_OP(draft_model_preprocess)
"seq_lens_decoder_out",
"step_idx_out",
"not_need_stop_out",
"batch_drop_out"})
.Attrs({"max_draft_token: int", "truncate_first_token: bool", "splitwise_prefill: bool"})
"batch_drop_out",
"pre_ids_out"})
.Attrs({"num_model_step: int", "truncate_first_token: bool", "splitwise_prefill: bool"})
.SetInplaceMap({{"draft_tokens", "draft_tokens_out"},
{"input_ids", "input_ids_out"},
{"stop_flags", "stop_flags_out"},
@@ -455,5 +489,6 @@ PD_BUILD_STATIC_OP(draft_model_preprocess)
{"seq_lens_decoder", "seq_lens_decoder_out"},
{"step_idx", "step_idx_out"},
{"not_need_stop", "not_need_stop_out"},
{"batch_drop", "batch_drop_out"}})
{"batch_drop", "batch_drop_out"},
{"pre_ids", "pre_ids_out"}})
.SetKernelFn(PD_KERNEL(DraftModelPreprocess));

View File

@@ -63,10 +63,9 @@ __global__ void draft_model_update_kernel(const int64_t* inter_next_tokens,
token_this_time = next_tokens_start[seq_len_this_time - 1];
draft_token_now[0] = next_tokens_start[seq_len_this_time - 1];
base_model_draft_tokens_now[substep + 1] = token_this_time;
for (int i = 0; i < seq_len_this_time; ++i) {
pre_ids_now[step_idx[tid] + 1 + i] = next_tokens_start[i];
}
step_idx[tid] += seq_len_this_time;
pre_ids_now[step_idx[tid]] = token_this_time;
} else {
token_this_time = next_tokens_start[0];

View File

@@ -49,9 +49,7 @@ __global__ void ComputeOrderKernel(
for (int j = 0; j < cur_seq_lens_encoder; j++) {
position_map[in_offset++] = out_offset++;
}
// 2. base model encoder. Base step=0
} else if (cur_base_model_seq_lens_encoder != 0) {
// 3. New end
// 2. Base model stop at last verify-step.
} else if (cur_base_model_seq_lens_this_time != 0 && cur_seq_lens_this_time == 0) {
#ifdef DEBUG_EAGLE_KERNEL
printf("batch %d: base=0. draft !=0 \n", i);
@@ -61,20 +59,25 @@ __global__ void ComputeOrderKernel(
// 4. stopped
} else if (cur_base_model_seq_lens_this_time == 0 && cur_seq_lens_this_time == 0) /* end */ {
} else {
if (accept_num <= actual_draft_token_num) /*Accept partial draft tokens*/ {
#ifdef DEBUG_EAGLE_KERNEL
printf("batch %d: accept_num <= actual_draft_token_num \n", i);
#endif
position_map[in_offset + accept_num - 1] = out_offset++;
in_offset += cur_base_model_seq_lens_this_time;
} else /*Accept all draft tokens*/ {
#ifdef DEBUG_EAGLE_KERNEL
printf("batch %d: accept_num > actual_draft_token_num \n", i);
#endif
position_map[in_offset + accept_num - 2] = out_offset++;
position_map[in_offset + accept_num - 1] = out_offset++;
in_offset += cur_base_model_seq_lens_this_time;
for (int i = 0; i < accept_num; i++) {
position_map[in_offset++] = out_offset++;
}
in_offset += cur_base_model_seq_lens_this_time - accept_num;
// (liuzichang): Temperary Reserved for debug
// if (accept_num <= actual_draft_token_num) /*Accept partial draft tokens*/ {
// #ifdef DEBUG_EAGLE_KERNEL
// printf("batch %d: accept_num <= actual_draft_token_num \n", i);
// #endif
// position_map[in_offset + accept_num - 1] = out_offset++;
// in_offset += cur_base_model_seq_lens_this_time;
// } else /*Accept all draft tokens*/ {
// #ifdef DEBUG_EAGLE_KERNEL
// printf("batch %d: accept_num > actual_draft_token_num \n", i);
// #endif
// position_map[in_offset + accept_num - 2] = out_offset++;
// position_map[in_offset + accept_num - 1] = out_offset++;
// in_offset += cur_base_model_seq_lens_this_time;
// }
}
}
output_token_num[0] = out_offset;

View File

@@ -0,0 +1,214 @@
// Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <iostream>
#include <vector>
#include <string>
#include <algorithm>
#include <chrono>
#include <cstdlib>
#include "paddle/extension.h"
#ifndef PD_BUILD_STATIC_OP
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
int sum_mixed(const int *value, int num) {
int sum_value = 0;
for (int i = 0; i <= num; i++) {
sum_value += value[i];
}
return sum_value;
}
void find_candidate_pred_tokens_mixed(const int64_t *input_ids,
const int64_t *input_ids_len,
const int64_t *pre_ids,
const int64_t *step_idx,
const int *draft_token_num,
int64_t *draft_tokens,
int32_t *seq_lens_this_time,
int32_t *seq_lens_decoder,
int64_t *max_dec_len,
int64_t input_ids_stride,
int64_t pre_ids_stride,
int64_t draft_tokens_stride,
int64_t max_batch_size,
int max_ngram_size = 3,
int min_ngram_size = 1,
const int max_draft_tokens = 10) {
int threshold = 1024;
// dynamic in future
char *env_var = getenv("SPEC_TOKENUM_THRESHOLD");
if (env_var) {
threshold = std::stoi(env_var);
}
int unprocessed_batch_size = 0;
for (int batch_idx = 0; batch_idx < max_batch_size; batch_idx++) {
if (seq_lens_decoder[batch_idx] > 0) {
unprocessed_batch_size++;
}
}
for (int batch_idx = 0; batch_idx < max_batch_size; batch_idx++) {
const int ori_seq_len_this_time = seq_lens_this_time[batch_idx];
int max_draft_tokens_query = std::min(static_cast<int64_t>(
max_draft_tokens - ori_seq_len_this_time + 1), max_dec_len[batch_idx] - step_idx[batch_idx] - 1);
if (ori_seq_len_this_time == 0 || max_draft_tokens_query <= 0) {
continue;
}
const int64_t *cur_input_ids = input_ids + batch_idx * input_ids_stride;
int64_t *cur_draft_tokens = draft_tokens + batch_idx * draft_tokens_stride;
const int64_t *cur_pre_ids = pre_ids + batch_idx * pre_ids_stride;
const int64_t cur_step_idx = step_idx[batch_idx];
const int64_t cur_input_ids_len = input_ids_len[batch_idx];
unprocessed_batch_size--;
auto sum_token_num = sum_mixed(seq_lens_this_time, batch_idx);
int left_min_token_num = unprocessed_batch_size;
if (sum_token_num + max_draft_tokens_query + left_min_token_num > threshold) {
int tmp_max_draft_tokens = threshold - sum_token_num - left_min_token_num;
max_draft_tokens_query = std::min(max_draft_tokens_query, tmp_max_draft_tokens);
}
if (sum_token_num + left_min_token_num >= threshold - 1) {
continue;
}
bool match_global = false;
// apply ngram_match in input_ids
for (int ngram_size = max_ngram_size; ngram_size >= min_ngram_size && !match_global; --ngram_size) {
// Extract the last n tokens as our search ngram
if (cur_step_idx < ngram_size) {
continue;
}
const int64_t *ngram = cur_pre_ids + (cur_step_idx + 1 - ngram_size);
// Iterate through sliding windows of size ngram_size
// bool match_input = false;
for (int64_t i = 0; i <= cur_input_ids_len - ngram_size && !match_global; ++i) {
// Check if the current window matches the ngram
bool match_local = true;
for (int j = 0; j < ngram_size; j++) {
if (ngram[j] != cur_input_ids[i + j]) {
match_local = false;
break;
}
}
if (match_local) {
int64_t start_idx = i + ngram_size;
int64_t end_idx = std::min(start_idx + max_draft_tokens_query, cur_input_ids_len);
if (start_idx >= end_idx)
continue;
int64_t cur_draft_token_num = end_idx - start_idx;
seq_lens_this_time[batch_idx] = ori_seq_len_this_time + cur_draft_token_num;
memcpy(cur_draft_tokens + ori_seq_len_this_time, cur_input_ids + start_idx, sizeof(int64_t) * cur_draft_token_num);
// To break the current batch_idx for-loop
match_global = true;
break;
}
}
// apply ngram_match in generated tokens
if (!match_global) {
for (int64_t i = 0; i <= cur_step_idx - ngram_size && !match_global; ++i) {
// Check if the current window matches the ngram
bool match_local = true;
for (int j = 0; j < ngram_size; j++) {
if (ngram[j] != cur_pre_ids[i + j]) {
match_local = false;
break;
}
}
if (match_local) {
int64_t start_idx = i + ngram_size;
int64_t end_idx = std::min(start_idx + max_draft_tokens_query, cur_step_idx);
int64_t cur_draft_token_num = end_idx - start_idx;
if (start_idx >= end_idx)
continue;
// printf("match in Output with Ngram_size %d. %lld:[%lld,%lld]\n",ngram_size, cur_draft_token_num, start_idx, end_idx);
seq_lens_this_time[batch_idx] = ori_seq_len_this_time + cur_draft_token_num;
memcpy(cur_draft_tokens + ori_seq_len_this_time, cur_pre_ids + start_idx, sizeof(int64_t) * cur_draft_token_num);
match_global = true;
break;
}
}
}
}
}
}
void HybridMtpNgram(const paddle::Tensor &input_ids,
const paddle::Tensor &input_ids_len,
const paddle::Tensor &pre_ids,
const paddle::Tensor &step_idx,
const paddle::Tensor &draft_token_num,
const paddle::Tensor &draft_tokens,
const paddle::Tensor &seq_lens_this_time,
const paddle::Tensor &seq_lens_decoder,
const paddle::Tensor &max_dec_len,
const int max_ngram_size,
const int min_ngram_size,
const int max_draft_tokens) {
auto input_ids_shape = input_ids.shape();
const int64_t input_ids_stride = input_ids_shape[1];
auto pre_ids_shape = pre_ids.shape();
const int64_t pre_ids_stride = pre_ids_shape[1];
auto draft_tokens_shape = draft_tokens.shape();
const int64_t draft_tokens_stride = draft_tokens_shape[1];
const int64_t max_batch_size = seq_lens_this_time.shape()[0];
find_candidate_pred_tokens_mixed(input_ids.data<int64_t>(),
input_ids_len.data<int64_t>(),
pre_ids.data<int64_t>(),
step_idx.data<int64_t>(),
draft_token_num.data<int>(),
const_cast<int64_t *>(draft_tokens.data<int64_t>()),
const_cast<int32_t *>(seq_lens_this_time.data<int32_t>()),
const_cast<int32_t *>(seq_lens_decoder.data<int32_t>()),
const_cast<int64_t *>(max_dec_len.data<int64_t>()),
input_ids_stride,
pre_ids_stride,
draft_tokens_stride,
max_batch_size,
max_ngram_size,
min_ngram_size,
max_draft_tokens);
}
PD_BUILD_STATIC_OP(hybrid_mtp_ngram)
.Inputs({"input_ids",
"input_ids_len",
"pre_ids",
"step_idx",
"draft_token_num",
"draft_tokens",
"seq_lens_this_time",
"seq_lens_decoder",
"max_dec_len"})
.Attrs({"max_ngram_size: int", "min_ngram_size: int", "max_draft_tokens: int"})
.Outputs({"draft_tokens_out", "seq_lens_this_time_out"})
.SetKernelFn(PD_KERNEL(HybridMtpNgram))
.SetInplaceMap({{"draft_tokens", "draft_tokens_out"}, {"seq_lens_this_time", "seq_lens_this_time_out"}});