mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
[Bug fix] Fix block num in scheduler v1 for release2.0.4 (#3314)
* fix bug for scheduler v0 * fix block num setting in scheduler v1 * fix block num setting in scheduler v1 * fix block num setting in scheduler v1 * fix block num setting in scheduler v1 * fix block num setting in scheduler v1
This commit is contained in:
@@ -64,7 +64,10 @@ class PrefixCacheManager:
|
||||
self.speculative_config = config.speculative_config
|
||||
self.local_data_parallel_id = local_data_parallel_id
|
||||
|
||||
self.num_gpu_blocks = self.cache_config.prefill_kvcache_block_num
|
||||
if envs.ENABLE_V1_KVCACHE_SCHEDULER:
|
||||
self.num_gpu_blocks = self.cache_config.total_block_num
|
||||
else:
|
||||
self.num_gpu_blocks = self.cache_config.prefill_kvcache_block_num
|
||||
self.num_cpu_blocks = self.cache_config.num_cpu_blocks
|
||||
self.gpu_free_block_list = list(range(self.num_gpu_blocks - 1, -1, -1))
|
||||
if self.num_cpu_blocks > 0:
|
||||
|
@@ -18,6 +18,7 @@ import json
|
||||
from dataclasses import asdict, dataclass
|
||||
from dataclasses import fields as dataclass_fields
|
||||
from typing import Any, Dict, List, Optional
|
||||
import os
|
||||
|
||||
from fastdeploy.engine.config import (
|
||||
CacheConfig,
|
||||
@@ -854,7 +855,10 @@ class EngineArgs:
|
||||
if self.enable_chunked_prefill:
|
||||
self.max_num_batched_tokens = 2048
|
||||
else:
|
||||
self.max_num_batched_tokens = self.max_model_len
|
||||
if not int(os.getenv('ENABLE_V1_KVCACHE_SCHEDULER', '0')):
|
||||
self.max_num_batched_tokens = self.max_model_len
|
||||
else:
|
||||
self.max_num_batched_tokens = 8192
|
||||
scheduler_cfg = self.create_scheduler_config()
|
||||
speculative_cfg = self.create_speculative_config()
|
||||
graph_opt_cfg = self.create_graph_optimization_config()
|
||||
|
@@ -211,6 +211,8 @@ class CacheConfig:
|
||||
self.gpu_memory_utilization = gpu_memory_utilization
|
||||
self.num_gpu_blocks_override = num_gpu_blocks_override
|
||||
self.kv_cache_ratio = kv_cache_ratio
|
||||
if envs.ENABLE_V1_KVCACHE_SCHEDULER:
|
||||
self.kv_cache_ratio = 1.0
|
||||
self.enc_dec_block_num = enc_dec_block_num
|
||||
self.prealloc_dec_block_slot_num_threshold = prealloc_dec_block_slot_num_threshold
|
||||
self.cache_dtype = cache_dtype
|
||||
@@ -291,7 +293,10 @@ class CacheConfig:
|
||||
self.dec_token_num = self.enc_dec_block_num * self.block_size
|
||||
if self.num_gpu_blocks_override is not None:
|
||||
self.total_block_num = self.num_gpu_blocks_override
|
||||
self.prefill_kvcache_block_num = int(self.total_block_num * self.kv_cache_ratio)
|
||||
if envs.ENABLE_V1_KVCACHE_SCHEDULER:
|
||||
self.prefill_kvcache_block_num = self.total_block_num
|
||||
else:
|
||||
self.prefill_kvcache_block_num = int(self.total_block_num * self.kv_cache_ratio)
|
||||
else:
|
||||
length = num_total_tokens // number_of_tasks
|
||||
block_num = (length + self.block_size - 1 + self.dec_token_num) // self.block_size
|
||||
@@ -304,7 +309,10 @@ class CacheConfig:
|
||||
reset gpu block number
|
||||
"""
|
||||
self.total_block_num = num_gpu_blocks
|
||||
self.prefill_kvcache_block_num = int(self.total_block_num * self.kv_cache_ratio)
|
||||
if envs.ENABLE_V1_KVCACHE_SCHEDULER:
|
||||
self.prefill_kvcache_block_num = self.total_block_num
|
||||
else:
|
||||
self.prefill_kvcache_block_num = int(self.total_block_num * self.kv_cache_ratio)
|
||||
llm_logger.info(
|
||||
f"Reset block num, the total_block_num:{self.total_block_num},"
|
||||
f" prefill_kvcache_block_num:{self.prefill_kvcache_block_num}"
|
||||
@@ -796,7 +804,10 @@ class Config:
|
||||
if self.cache_config.enable_chunked_prefill:
|
||||
self.max_num_batched_tokens = 2048
|
||||
else:
|
||||
self.max_num_batched_tokens = self.max_model_len
|
||||
if not int(os.getenv('ENABLE_V1_KVCACHE_SCHEDULER', '0')):
|
||||
self.max_num_batched_tokens = self.max_model_len
|
||||
else:
|
||||
self.max_num_batched_tokens = 8192
|
||||
|
||||
if self.long_prefill_token_threshold == 0:
|
||||
self.long_prefill_token_threshold = int(self.max_model_len * 0.04)
|
||||
@@ -844,10 +855,11 @@ class Config:
|
||||
)
|
||||
|
||||
if not self.cache_config.enable_chunked_prefill:
|
||||
assert self.max_num_batched_tokens >= self.max_model_len, (
|
||||
f"max_num_batched_tokens: {self.max_num_batched_tokens} "
|
||||
f"should be larger than or equal to max_model_len: {self.max_model_len}"
|
||||
)
|
||||
if not int(os.getenv('ENABLE_V1_KVCACHE_SCHEDULER', '0')):
|
||||
assert self.max_num_batched_tokens >= self.max_model_len, (
|
||||
f"max_num_batched_tokens: {self.max_num_batched_tokens} "
|
||||
f"should be larger than or equal to max_model_len: {self.max_model_len}"
|
||||
)
|
||||
else:
|
||||
assert self.max_num_batched_tokens >= self.cache_config.block_size, (
|
||||
f"max_num_batched_tokens: {self.max_num_batched_tokens} "
|
||||
|
@@ -234,8 +234,7 @@ class ResourceManagerV1(ResourceManager):
|
||||
llm_logger.debug(
|
||||
f"scheduler prefill task: {request} request.need_prefill_tokens {request.need_prefill_tokens} request.num_computed_tokens {request.num_computed_tokens}"
|
||||
)
|
||||
num_new_tokens = request.prompt_token_ids_len - request.num_computed_tokens
|
||||
num_new_tokens = min(num_new_tokens, token_budget)
|
||||
num_new_tokens = self._get_num_new_tokens(request, token_budget)
|
||||
num_new_block = self.get_new_block_nums(request, num_new_tokens)
|
||||
# Allocate blocks to prefill
|
||||
if self.cache_manager.can_allocate_gpu_blocks(num_new_block):
|
||||
|
@@ -208,11 +208,15 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
request = req_dicts[i]
|
||||
idx = request.idx
|
||||
if request.task_type.value == RequestType.PREFILL.value: # prefill task
|
||||
logger.debug(f"Handle prefill request {request} at idx {idx}")
|
||||
prefill_start_index = request.prefill_start_index
|
||||
prefill_end_index = request.prefill_end_index
|
||||
length = prefill_end_index - prefill_start_index
|
||||
input_ids = request.prompt_token_ids + request.output_token_ids
|
||||
logger.debug(
|
||||
f"Handle prefill request {request} at idx {idx}, "
|
||||
f"{prefill_start_index=}, {prefill_end_index=}, "
|
||||
f"need_prefilled_token_num={len(input_ids)}"
|
||||
)
|
||||
self.share_inputs["input_ids"][idx : idx + 1, :length] = np.array(
|
||||
input_ids[prefill_start_index:prefill_end_index]
|
||||
)
|
||||
|
Reference in New Issue
Block a user