Revert "【FIX】Change the name of sparse attn from moba to plas (#3845)" (#4001)
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled

This reverts commit e31c8f7336.
This commit is contained in:
Jiang-Jia-Jun
2025-09-09 11:08:23 +08:00
committed by GitHub
parent bbd548ceb6
commit c60adf4281
13 changed files with 150 additions and 150 deletions

View File

@@ -690,63 +690,63 @@ class GraphOptimizationConfig:
argument = self.use_cudagraph
class PlasAttentionConfig:
class MobaAttentionConfig:
def __init__(
self,
args,
):
self.plas_encoder_top_k_left: int = None
self.plas_encoder_top_k_right: int = None
"The sparse topk of encoder attention is located at [plas_encoder_top_k_left, plas_encoder top_k_right]"
self.plas_decoder_top_k_left: int = None
self.plas_decoder_top_k_right: int = None
"The sparse topk of decoder attention is located at [plas_decoder_top_k_left, plas_decoder top_k_right]"
self.plas_use_encoder_seq_limit: int = None
"When the number of encdoer token is less than plas_use_encoder_seq_limit, it is not sparse"
self.plas_use_decoder_seq_limit: int = None
"When the number of decdoer token is less than plas_use_decoder_seq_limit, it is not sparse"
self.plas_block_size: int = 128
self.mlp_weight_name: str = "plas_attention_mlp_weight.safetensors"
self.plas_max_seq_length: int = 128 * 1024
self.moba_encoder_top_k_left: int = None
self.moba_encoder_top_k_right: int = None
"The sparse topk of encoder attention is located at [moba_encoder_top_k_left, moba_encoder top_k_right]"
self.moba_decoder_top_k_left: int = None
self.moba_decoder_top_k_right: int = None
"The sparse topk of decoder attention is located at [moba_decoder_top_k_left, moba_decoder top_k_right]"
self.moba_use_encoder_seq_limit: int = None
"When the number of encdoer token is less than moba_use_encoder_seq_limit, it is not sparse"
self.moba_use_decoder_seq_limit: int = None
"When the number of decdoer token is less than moba_use_decoder_seq_limit, it is not sparse"
self.moba_block_size: int = 128
self.mlp_weight_name: str = "moba_mlp_weight.safetensors"
self.moba_max_seq_length: int = 128 * 1024
if args is not None:
for key, value in args.items():
if hasattr(self, key):
setattr(self, key, value)
if self.plas_use_encoder_seq_limit is None and self.plas_encoder_top_k_left is not None:
self.plas_use_encoder_seq_limit = self.plas_encoder_top_k_left * self.plas_block_size
if self.plas_use_decoder_seq_limit is None and self.plas_decoder_top_k_left is not None:
self.plas_use_decoder_seq_limit = self.plas_decoder_top_k_left * self.plas_block_size
if self.moba_use_encoder_seq_limit is None and self.moba_encoder_top_k_left is not None:
self.moba_use_encoder_seq_limit = self.moba_encoder_top_k_left * self.moba_block_size
if self.moba_use_decoder_seq_limit is None and self.moba_decoder_top_k_left is not None:
self.moba_use_decoder_seq_limit = self.moba_decoder_top_k_left * self.moba_block_size
self.check_legality_parameters()
def check_legality_parameters(
self,
) -> None:
if self.plas_encoder_top_k_left is not None:
assert self.plas_encoder_top_k_left > 0, "plas_encoder_top_k_left must large than 0"
if self.moba_encoder_top_k_left is not None:
assert self.moba_encoder_top_k_left > 0, "moba_encoder_top_k_left must large than 0"
if self.plas_encoder_top_k_right is not None:
assert self.plas_encoder_top_k_right > 0, "plas_encoder_top_k_right must large than 0"
if self.moba_encoder_top_k_right is not None:
assert self.moba_encoder_top_k_right > 0, "moba_encoder_top_k_right must large than 0"
assert (
self.plas_encoder_top_k_right >= self.plas_encoder_top_k_left
), "plas_encoder_top_k_right must large than plas_encoder_top_k_left"
self.moba_encoder_top_k_right >= self.moba_encoder_top_k_left
), "moba_encoder_top_k_right must large than moba_encoder_top_k_left"
if self.plas_decoder_top_k_left is not None:
assert self.plas_decoder_top_k_left > 0, "plas_decoder_top_k_left must large than 0"
if self.moba_decoder_top_k_left is not None:
assert self.moba_decoder_top_k_left > 0, "moba_decoder_top_k_left must large than 0"
if self.plas_decoder_top_k_right is not None:
assert self.plas_decoder_top_k_right > 0, "plas_decoder_top_k_right must large than 0"
if self.moba_decoder_top_k_right is not None:
assert self.moba_decoder_top_k_right > 0, "moba_decoder_top_k_right must large than 0"
assert (
self.plas_decoder_top_k_right >= self.plas_decoder_top_k_left
), "plas_decoder_top_k_right must large than plas_decoder_top_k_left"
self.moba_decoder_top_k_right >= self.moba_decoder_top_k_left
), "moba_decoder_top_k_right must large than moba_decoder_top_k_left"
if self.plas_use_encoder_seq_limit is not None and self.plas_encoder_top_k_left is not None:
assert self.plas_use_encoder_seq_limit >= self.plas_encoder_top_k_left * self.plas_block_size
if self.plas_use_decoder_seq_limit is not None and self.plas_decoder_top_k_left is not None:
assert self.plas_use_decoder_seq_limit >= self.plas_decoder_top_k_left * self.plas_block_size
if self.moba_use_encoder_seq_limit is not None and self.moba_encoder_top_k_left is not None:
assert self.moba_use_encoder_seq_limit >= self.moba_encoder_top_k_left * self.moba_block_size
if self.moba_use_decoder_seq_limit is not None and self.moba_decoder_top_k_left is not None:
assert self.moba_use_decoder_seq_limit >= self.moba_decoder_top_k_left * self.moba_block_size
def to_json_string(self):
"""
Convert plas_attention_config to json string.
Convert moba_attention_config to json string.
"""
return json.dumps({key: value for key, value in self.__dict__.items() if value is not None})
@@ -1105,7 +1105,7 @@ class FDConfig:
decoding_config: DecodingConfig = None,
quant_config: QuantConfigBase = None,
graph_opt_config: GraphOptimizationConfig = None,
plas_attention_config: PlasAttentionConfig = None,
moba_attention_config: MobaAttentionConfig = None,
speculative_config: SpeculativeConfig = None,
tokenizer: str = None,
max_model_len: int = 8192,
@@ -1140,7 +1140,7 @@ class FDConfig:
self.early_stop_config: Optional[EarlyStopConfig] = early_stop_config
self.decoding_config: DecodingConfig = decoding_config # type: ignore
self.cache_config: CacheConfig = cache_config # type: ignore
self.plas_attention_config: Optional[PlasAttentionConfig] = plas_attention_config
self.moba_attention_config: Optional[MobaAttentionConfig] = moba_attention_config
# Initialize cuda graph capture list
if self.graph_opt_config.cudagraph_capture_sizes is None:
self.graph_opt_config._set_cudagraph_sizes(max_num_seqs=self.parallel_config.max_num_seqs)

View File

@@ -28,9 +28,9 @@ from fastdeploy.config import (
FDConfig,
GraphOptimizationConfig,
LoadConfig,
MobaAttentionConfig,
ModelConfig,
ParallelConfig,
PlasAttentionConfig,
SpeculativeConfig,
TaskOption,
)
@@ -342,9 +342,9 @@ class EngineArgs:
"""
Configuration for graph optimization backend execution.
"""
plas_attention_config: Optional[Dict[str, Any]] = None
moba_attention_config: Optional[Dict[str, Any]] = None
"""
Configuration for plas attention.
Configuration for moba attention.
"""
enable_logprob: bool = False
@@ -559,9 +559,9 @@ class EngineArgs:
help="",
)
model_group.add_argument(
"--plas-attention-config",
"--moba-attention-config",
type=json.loads,
default=EngineArgs.plas_attention_config,
default=EngineArgs.moba_attention_config,
help="",
)
model_group.add_argument(
@@ -959,17 +959,17 @@ class EngineArgs:
graph_optimization_args[k] = v
return GraphOptimizationConfig(graph_optimization_args)
def create_plas_attention_config(self) -> PlasAttentionConfig:
def create_moba_attention_config(self) -> MobaAttentionConfig:
"""
Create and retuan a PlasAttentionConfig object based on the current settings.
Create and retuan a MobaAttentionConfig object based on the current settings.
"""
attention_args = asdict(self)
if self.plas_attention_config is not None:
for k, v in self.plas_attention_config.items():
if self.moba_attention_config is not None:
for k, v in self.moba_attention_config.items():
attention_args[k] = v
return PlasAttentionConfig(attention_args)
return MobaAttentionConfig(attention_args)
else:
return PlasAttentionConfig(None)
return MobaAttentionConfig(None)
def create_early_stop_config(self) -> EarlyStopConfig:
"""
@@ -1025,7 +1025,7 @@ class EngineArgs:
scheduler_cfg = self.create_scheduler_config()
graph_opt_cfg = self.create_graph_optimization_config()
graph_opt_cfg.update_use_cudagraph(self.use_cudagraph)
plas_attention_config = self.create_plas_attention_config()
moba_attention_config = self.create_moba_attention_config()
early_stop_cfg = self.create_early_stop_config()
early_stop_cfg.update_enable_early_stop(self.enable_early_stop)
@@ -1063,7 +1063,7 @@ class EngineArgs:
max_long_partial_prefills=self.max_long_partial_prefills,
long_prefill_token_threshold=self.long_prefill_token_threshold,
graph_opt_config=graph_opt_cfg,
plas_attention_config=plas_attention_config,
moba_attention_config=moba_attention_config,
guided_decoding_backend=self.guided_decoding_backend,
disable_any_whitespace=self.guided_decoding_disable_any_whitespace,
early_stop_config=early_stop_cfg,

View File

@@ -493,7 +493,7 @@ class LLMEngine:
f" --early_stop_config '{self.cfg.early_stop_config.to_json_string()}'"
f" --reasoning_parser {self.cfg.reasoning_parser}"
f" --load_choices {self.cfg.load_config.load_choices}"
f" --plas_attention_config '{self.cfg.plas_attention_config.to_json_string()}'"
f" --moba_attention_config '{self.cfg.moba_attention_config.to_json_string()}'"
f" --ips {ips}"
)

View File

@@ -20,7 +20,7 @@ from .block_multihead_attn_backend import BlockAttentionBackend
from .flash_attn_backend import FlashAttentionBackend
from .iluvatar_attn_backend import IluvatarAttnBackend
from .mla_attention_backend import MLAAttentionBackend
from .moba_attention_backend import PlasAttentionBackend
from .moba_attention_backend import MobaAttentionBackend
from .native_paddle_backend import PaddleNativeAttnBackend
from .xpu_attn_backend import XPUAttentionBackend
@@ -35,5 +35,5 @@ __all__ = [
"IluvatarAttnBackend",
"BlockAttentionBackend",
"Attention",
"PlasAttentionBackend",
"MobaAttentionBackend",
]

View File

@@ -119,19 +119,19 @@ class Attention(nn.Layer):
self.init_weight()
if (
fd_config.plas_attention_config is not None
and fd_config.plas_attention_config.plas_encoder_top_k_left is not None
and fd_config.plas_attention_config.plas_encoder_top_k_right is not None
and fd_config.plas_attention_config.plas_decoder_top_k_left is not None
and fd_config.plas_attention_config.plas_decoder_top_k_right is not None
fd_config.moba_attention_config is not None
and fd_config.moba_attention_config.moba_encoder_top_k_left is not None
and fd_config.moba_attention_config.moba_encoder_top_k_right is not None
and fd_config.moba_attention_config.moba_decoder_top_k_left is not None
and fd_config.moba_attention_config.moba_decoder_top_k_right is not None
):
mlp_weight_path = os.path.join(
fd_config.model_config.model, fd_config.plas_attention_config.mlp_weight_name
fd_config.model_config.model, fd_config.moba_attention_config.mlp_weight_name
)
self.plas_use_mlp = mlp_weight_path is not None and os.path.exists(mlp_weight_path)
plas_block_size = fd_config.plas_attention_config.plas_block_size
plas_max_seq_length = fd_config.plas_attention_config.plas_max_seq_length
if self.plas_use_mlp:
self.moba_use_mlp = mlp_weight_path is not None and os.path.exists(mlp_weight_path)
moba_block_size = fd_config.moba_attention_config.moba_block_size
moba_max_seq_length = fd_config.moba_attention_config.moba_max_seq_length
if self.moba_use_mlp:
mlp_weight = {}
with safe_open(mlp_weight_path, framework="np", device="cpu") as f:
for key_name in f.keys():
@@ -148,12 +148,12 @@ class Attention(nn.Layer):
* self.kv_num_heads : (fd_config.parallel_config.tensor_parallel_rank + 1)
* self.kv_num_heads
]
assert self.attn_gate_weight.shape[1] % plas_block_size == 0
assert self.attn_gate_weight.shape[1] % moba_block_size == 0
self.cache_k_block_means = paddle.zeros(
[
fd_config.parallel_config.max_num_seqs,
plas_max_seq_length // plas_block_size,
moba_max_seq_length // moba_block_size,
self.kv_num_heads,
self.head_dim,
],

View File

@@ -39,7 +39,7 @@ from fastdeploy.model_executor.layers.attention.base_attention_backend import (
@dataclass
class PlasAttentionMetadata(AttentionMetadata):
class MobaAttentionMetadata(AttentionMetadata):
"""
AppendAttentionMetadata
"""
@@ -54,7 +54,7 @@ class PlasAttentionMetadata(AttentionMetadata):
max_dec_len_this_time: int = 0
class PlasAttentionBackend(AttentionBackend):
class MobaAttentionBackend(AttentionBackend):
"""
The backend class that uses paddle native attention implementation.
Which is used only for testing purpose.
@@ -70,11 +70,11 @@ class PlasAttentionBackend(AttentionBackend):
decoder_block_shape_q: int = -1,
) -> None:
"""
PlasAttentionBackend __init__
MobaAttentionBackend __init__
"""
super().__init__()
self.attention_metadata: PlasAttentionMetadata = None
assert fd_config.plas_attention_config is not None, "plas_attention_config is None"
self.attention_metadata: MobaAttentionMetadata = None
assert fd_config.moba_attention_config is not None, "moba_attention_config is None"
self.block_size = fd_config.parallel_config.block_size
self.max_seq_len = fd_config.parallel_config.max_model_len
self.max_num_seqs = fd_config.parallel_config.max_num_seqs
@@ -83,18 +83,18 @@ class PlasAttentionBackend(AttentionBackend):
self.head_dim = fd_config.model_config.head_dim
self.num_layers: int = fd_config.model_config.num_hidden_layers
self.attn_block_m = 128
self.plas_block_size = fd_config.plas_attention_config.plas_block_size
self.plas_encoder_top_k_left = int(fd_config.plas_attention_config.plas_encoder_top_k_left)
self.plas_encoder_top_k_right = int(fd_config.plas_attention_config.plas_encoder_top_k_right)
self.plas_use_encoder_seq_limit = int(fd_config.plas_attention_config.plas_use_encoder_seq_limit)
self.plas_decoder_top_k_left = int(fd_config.plas_attention_config.plas_decoder_top_k_left)
self.plas_decoder_top_k_right = int(fd_config.plas_attention_config.plas_decoder_top_k_right)
self.plas_use_decoder_seq_limit = int(fd_config.plas_attention_config.plas_use_decoder_seq_limit)
self.plas_max_seq_length = fd_config.plas_attention_config.plas_max_seq_length
self.moba_block_size = fd_config.moba_attention_config.moba_block_size
self.moba_encoder_top_k_left = int(fd_config.moba_attention_config.moba_encoder_top_k_left)
self.moba_encoder_top_k_right = int(fd_config.moba_attention_config.moba_encoder_top_k_right)
self.moba_use_encoder_seq_limit = int(fd_config.moba_attention_config.moba_use_encoder_seq_limit)
self.moba_decoder_top_k_left = int(fd_config.moba_attention_config.moba_decoder_top_k_left)
self.moba_decoder_top_k_right = int(fd_config.moba_attention_config.moba_decoder_top_k_right)
self.moba_use_decoder_seq_limit = int(fd_config.moba_attention_config.moba_use_decoder_seq_limit)
self.moba_max_seq_length = fd_config.moba_attention_config.moba_max_seq_length
def init_attention_metadata(self, forward_meta: ForwardMeta):
"""Init the metadata for a forward pass."""
metadata = PlasAttentionMetadata()
metadata = MobaAttentionMetadata()
metadata._dtype = paddle.get_default_dtype()
metadata.cu_seq_q_pack, metadata.cu_seqlens_k, metadata.q_pack_tokens = get_cur_cu_seq_len_k(
forward_meta.seq_lens_encoder,
@@ -116,7 +116,7 @@ class PlasAttentionBackend(AttentionBackend):
[k_token_num + self.attn_block_m, self.kv_num_heads * self.head_dim], dtype=metadata._dtype
)
self.attention_metadata = metadata
assert self.max_seq_len <= self.plas_max_seq_length
assert self.max_seq_len <= self.moba_max_seq_length
def get_kv_cache_shape(
self,
@@ -186,13 +186,13 @@ class PlasAttentionBackend(AttentionBackend):
self.max_seq_len,
attention_metadata.max_enc_len_this_time,
attention_metadata.max_dec_len_this_time,
self.plas_encoder_top_k_left,
self.plas_encoder_top_k_right,
self.plas_use_encoder_seq_limit,
self.plas_decoder_top_k_left,
self.plas_decoder_top_k_right,
self.plas_use_decoder_seq_limit,
layer.plas_use_mlp,
self.moba_encoder_top_k_left,
self.moba_encoder_top_k_right,
self.moba_use_encoder_seq_limit,
self.moba_decoder_top_k_left,
self.moba_decoder_top_k_right,
self.moba_use_decoder_seq_limit,
layer.moba_use_mlp,
getattr(layer, "cache_quant_type_str", "none"),
)[0]
return out

View File

@@ -26,7 +26,7 @@ class _Backend(enum.Enum):
MLA_ATTN = enum.auto()
FLASH_ATTN = enum.auto()
BLOCK_ATTN = enum.auto()
PLAS_ATTN = enum.auto()
MOBA_ATTN = enum.auto()
class Platform:

View File

@@ -64,9 +64,9 @@ class CUDAPlatform(Platform):
elif selected_backend == _Backend.FLASH_ATTN:
logger.info("Using FLASH ATTN backend.")
return "fastdeploy.model_executor.layers.attention.FlashAttentionBackend"
elif selected_backend == _Backend.PLAS_ATTN:
logger.info("Using PLAS ATTN backend.")
return "fastdeploy.model_executor.layers.attention.PlasAttentionBackend"
elif selected_backend == _Backend.MOBA_ATTN:
logger.info("Using MOBA ATTN backend.")
return "fastdeploy.model_executor.layers.attention.MobaAttentionBackend"
else:
raise ValueError(
"Invalid attention backend you specified.\n"

View File

@@ -59,7 +59,7 @@ class RolloutModelConfig:
graph_optimization_config: str = None,
early_stop_config: str = None,
local_rank: int = 0,
plas_attention_config: str = None,
moba_attention_config: str = None,
data_parallel_size: int = 1,
):
# Required parameters
@@ -106,7 +106,7 @@ class RolloutModelConfig:
self.local_rank = local_rank
self.early_stop_config = early_stop_config
self.ips = None
self.plas_attention_config = plas_attention_config
self.moba_attention_config = moba_attention_config
def __str__(self):
return "\n".join(f"{k}: {v}" for k, v in self.__dict__.items())

View File

@@ -34,9 +34,9 @@ from fastdeploy.config import (
FDConfig,
GraphOptimizationConfig,
LoadConfig,
MobaAttentionConfig,
ModelConfig,
ParallelConfig,
PlasAttentionConfig,
SpeculativeConfig,
)
from fastdeploy.input.ernie4_5_tokenizer import Ernie4_5Tokenizer
@@ -561,10 +561,10 @@ def parse_args():
help="Configuration of Graph optimization backend.",
)
parser.add_argument(
"--plas_attention_config",
"--moba_attention_config",
type=json.loads,
default=None,
help="Configation of plas attention.",
help="Configation of moba attention.",
)
parser.add_argument(
"--guided_decoding_backend",
@@ -677,7 +677,7 @@ def initialize_fd_config(args, ranks: int = 1, local_rank: int = 0) -> FDConfig:
graph_opt_config = GraphOptimizationConfig(args.graph_optimization_config)
plas_attention_config = PlasAttentionConfig(args.plas_attention_config)
moba_attention_config = MobaAttentionConfig(args.moba_attention_config)
early_stop_config = EarlyStopConfig(args.early_stop_config)
@@ -777,7 +777,7 @@ def initialize_fd_config(args, ranks: int = 1, local_rank: int = 0) -> FDConfig:
cache_config=cache_config,
engine_worker_queue_port=args.engine_worker_queue_port,
ips=args.ips,
plas_attention_config=plas_attention_config,
moba_attention_config=moba_attention_config,
)
update_fd_config_for_mm(fd_config)