mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
Merge branch 'feature/experimental_feature_20250908' into yuanlehome-patch-2
This commit is contained in:
@@ -38,14 +38,20 @@ __device__ int64_t topp_sampling_kernel(const int64_t *candidate_ids,
|
||||
const int tid = threadIdx.x;
|
||||
|
||||
float sum_scores = 0.0f;
|
||||
float rand_top_p = curand_uniform(dev_curand_states + tid) * topp;
|
||||
for (int i = 0; i < candidate_len; i++) {
|
||||
sum_scores += candidate_scores[i];
|
||||
}
|
||||
float tgt_topp = sum_scores < topp ? sum_scores : topp;
|
||||
|
||||
sum_scores = 0.0f;
|
||||
float rand_top_p = curand_uniform(dev_curand_states + tid) * tgt_topp;
|
||||
for (int i = 0; i < candidate_len; i++) {
|
||||
sum_scores += candidate_scores[i];
|
||||
if (rand_top_p <= sum_scores) {
|
||||
return candidate_ids[i];
|
||||
return candidate_ids[i];
|
||||
}
|
||||
}
|
||||
return candidate_ids[0];
|
||||
return candidate_ids[0];
|
||||
}
|
||||
|
||||
__global__ void setup_kernel(curandState_t *state, const uint64_t seed,
|
||||
|
@@ -467,6 +467,9 @@ __global__ void KeMatrixTopPBeamTopKFt(
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (top_p_value == 1.0 && actual_candidates_lens[token_id] == 0){
|
||||
actual_candidates_lens[token_id] = max_cadidate_len;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@@ -497,6 +497,7 @@ def control_scheduler(request: ControlSchedulerRequest):
|
||||
return JSONResponse(content=content.model_dump(), status_code=500)
|
||||
|
||||
if request.reset:
|
||||
llm_engine.engine.clear_data()
|
||||
llm_engine.engine.scheduler.reset()
|
||||
|
||||
if request.load_shards_num or request.reallocate_shard:
|
||||
|
@@ -95,6 +95,13 @@ environment_variables: dict[str, Callable[[], Any]] = {
|
||||
"FD_FOR_TORCH_MODEL_FORMAT": lambda: bool(int(os.getenv("FD_FOR_TORCH_MODEL_FORMAT", "0"))),
|
||||
# force disable default chunked prefill
|
||||
"FD_DISABLE_CHUNKED_PREFILL": lambda: bool(int(os.getenv("FD_DISABLE_CHUNKED_PREFILL", "0"))),
|
||||
# For separate setting of sampling parameters for speculative decoding
|
||||
"FD_SPECULATE_SAMPLING_TOP_P": lambda: (
|
||||
None if "FD_SPECULATE_SAMPLING_TOP_P" not in os.environ else float(os.environ["FD_SPECULATE_SAMPLING_TOP_P"])
|
||||
),
|
||||
"FD_SPECULATE_SAMPLING_TOP_K": lambda: (
|
||||
None if "FD_SPECULATE_SAMPLING_TOP_K" not in os.environ else float(os.environ["FD_SPECULATE_SAMPLING_TOP_K"])
|
||||
),
|
||||
"FD_ENABLE_INTERNAL_ADAPTER": lambda: int(os.getenv("FD_ENABLE_INTERNAL_ADAPTER", "0")),
|
||||
# LLMEngine recieve requests port, used when FD_ENABLE_INTERNAL_ADAPTER=1
|
||||
"FD_ZMQ_RECV_REQUEST_SERVER_PORT": lambda: os.getenv("FD_ZMQ_RECV_REQUEST_SERVER_PORT", "8200"),
|
||||
|
@@ -257,6 +257,7 @@ class DynamicWeightManager:
|
||||
while model_weights_status.value[0] != 0:
|
||||
if model_weights_status.value[0] == 1:
|
||||
logger.info("infer engine stopped! start to load new checkpoint...")
|
||||
model_runner.clear_requests()
|
||||
model_runner.update_parameters(pid)
|
||||
elif model_weights_status.value[0] == -1:
|
||||
logger.info("infer engine stopped! start to clear checkpoint...")
|
||||
|
@@ -303,8 +303,16 @@ class MTPProposer(Proposer):
|
||||
)
|
||||
# self.model_inputs["caches"] = self.cache_kvs
|
||||
# Inherit generation hyperparameters from the main model for consistency
|
||||
self.model_inputs["top_p"] = self.target_model_inputs["top_p"]
|
||||
self.model_inputs["top_k"] = self.target_model_inputs["top_k"]
|
||||
self.model_inputs["top_p"] = (
|
||||
self.target_model_inputs["top_p"]
|
||||
if envs.FD_SPECULATE_SAMPLING_TOP_P is None
|
||||
else paddle.full_like(self.target_model_inputs["top_p"], envs.FD_SPECULATE_SAMPLING_TOP_P)
|
||||
)
|
||||
self.model_inputs["top_k"] = (
|
||||
self.target_model_inputs["top_k"]
|
||||
if envs.FD_SPECULATE_SAMPLING_TOP_K is None
|
||||
else paddle.full_like(self.target_model_inputs["top_k"], envs.FD_SPECULATE_SAMPLING_TOP_K)
|
||||
)
|
||||
self.model_inputs["temperature"] = self.target_model_inputs["temperature"]
|
||||
self.model_inputs["eos_token_id"] = self.target_model_inputs["eos_token_id"]
|
||||
self.model_inputs["penalty_score"] = self.target_model_inputs["penalty_score"]
|
||||
|
@@ -315,6 +315,8 @@ class PaddleDisWorkerProc:
|
||||
self.worker.model_runner,
|
||||
self.parallel_config.engine_worker_queue_port,
|
||||
)
|
||||
logger.info(f"current task queue data: {self.task_queue.num_tasks()}")
|
||||
self.task_queue.clear_data()
|
||||
self.model_weights_signal[0] = 0
|
||||
logger.info(f"Rank: {self.local_rank} has updated or cleared parameters.")
|
||||
|
||||
|
Reference in New Issue
Block a user