mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 08:16:42 +08:00
[GCU] Update to develop (#2988)
This commit is contained in:
@@ -60,6 +60,7 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
local_rank: int,
|
||||
):
|
||||
super().__init__(fd_config=fd_config, device=device)
|
||||
self.enable_mm = self.model_config.enable_mm
|
||||
self.rank = rank
|
||||
self.local_rank = local_rank
|
||||
self.device_id = device_id
|
||||
@@ -80,8 +81,6 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
# Cuda Graph
|
||||
self.use_cudagraph = self.graph_opt_config.use_cudagraph
|
||||
self.cudagraph_capture_sizes = list(reversed(self.graph_opt_config.cudagraph_capture_sizes))
|
||||
self.cudagraph_num_of_warmups = self.graph_opt_config.cudagraph_num_of_warmups
|
||||
self.input_ids = paddle.zeros(self.parallel_config.max_num_seqs, dtype="int32")
|
||||
|
||||
# Initialize share inputs
|
||||
self._init_share_inputs(self.parallel_config.max_num_seqs)
|
||||
@@ -107,14 +106,14 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
|
||||
def exist_prefill(self):
|
||||
"""
|
||||
check whether prefill stage exist
|
||||
Check whether prefill stage exist
|
||||
"""
|
||||
if int(paddle.max(self.share_inputs["seq_lens_encoder"])) != 0:
|
||||
return 1
|
||||
else:
|
||||
return 0
|
||||
|
||||
def init_speculative_proposer(self):
|
||||
def _init_speculative_proposer(self):
|
||||
"""
|
||||
Init speculative proposer
|
||||
"""
|
||||
@@ -155,11 +154,19 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
if req_dicts[-1].disaggregate_info is not None and req_dicts[-1].disaggregate_info["role"] == "prefill":
|
||||
os.environ["PREFILL_NODE_ONE_STEP_STOP"] = "1"
|
||||
|
||||
def get_attr_from_request(request, attr, default_value=None):
|
||||
res = request.get(attr, default_value)
|
||||
if res is not None:
|
||||
return res
|
||||
else:
|
||||
return default_value
|
||||
|
||||
req_len = len(req_dicts)
|
||||
for i in range(req_len):
|
||||
request = req_dicts[i]
|
||||
idx = request.idx
|
||||
length = len(request.prompt_token_ids)
|
||||
assert length > 0, "The prompt requested must not be empty."
|
||||
|
||||
prefill_tokens = []
|
||||
if (
|
||||
@@ -177,11 +184,13 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
prefill_tokens.append(request.prompt_token_ids[0])
|
||||
self.share_inputs["pre_ids"][idx : idx + 1] = request.prompt_token_ids[-1]
|
||||
self.share_inputs["input_ids"][idx : idx + 1, 0] = request.prompt_token_ids[0]
|
||||
self.share_inputs["prompt_ids"][idx : idx + 1, :length] = np.array(request.prompt_token_ids)
|
||||
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = 0
|
||||
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = length
|
||||
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = 1
|
||||
self.share_inputs["step_seq_lens_encoder"][idx : idx + 1] = 0
|
||||
self.share_inputs["step_seq_lens_decoder"][idx : idx + 1] = length
|
||||
self.share_inputs["prompt_lens"][idx : idx + 1] = length
|
||||
self.share_inputs["step_idx"][idx : idx + 1] = 1
|
||||
|
||||
if self.speculative_decoding:
|
||||
@@ -195,39 +204,52 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
self.share_inputs["pre_ids"][idx : idx + 1] = -1
|
||||
self.share_inputs["step_idx"][idx : idx + 1] = 0
|
||||
self.share_inputs["input_ids"][idx : idx + 1, :length] = np.array(request.prompt_token_ids)
|
||||
self.share_inputs["prompt_ids"][idx : idx + 1, :length] = np.array(request.prompt_token_ids)
|
||||
|
||||
# Use chunked prefill
|
||||
if self.parallel_config.enable_chunked_prefill:
|
||||
request.set("chunk_idx", 1)
|
||||
logger.info(f"prefill_chunk_info: {request.prefill_chunk_info}")
|
||||
token_chunk_size = request.prefill_chunk_info[0]
|
||||
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = token_chunk_size
|
||||
self.share_inputs["input_ids"][idx, :token_chunk_size] = np.array(
|
||||
request.prompt_token_ids[:token_chunk_size]
|
||||
)
|
||||
self.share_inputs["step_seq_lens_encoder"][idx : idx + 1] = token_chunk_size
|
||||
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = token_chunk_size
|
||||
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = request.get("seq_lens_decoder", 0)
|
||||
self.share_inputs["step_seq_lens_decoder"][idx : idx + 1] = request.get("seq_lens_decoder", 0)
|
||||
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = token_chunk_size
|
||||
self.share_inputs["step_seq_lens_encoder"][idx : idx + 1] = token_chunk_size
|
||||
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = token_chunk_size
|
||||
self.share_inputs["prompt_lens"][idx : idx + 1] = token_chunk_size
|
||||
else:
|
||||
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = request.get("seq_lens_decoder", 0)
|
||||
self.share_inputs["step_seq_lens_decoder"][idx : idx + 1] = request.get("seq_lens_decoder", 0)
|
||||
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = length
|
||||
self.share_inputs["step_seq_lens_encoder"][idx : idx + 1] = length
|
||||
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = length
|
||||
self.share_inputs["prompt_lens"][idx : idx + 1] = length
|
||||
|
||||
if len(request.eos_token_ids) < self.parallel_config.eos_tokens_lens:
|
||||
request.eos_token_ids.append(request.eos_token_ids[0])
|
||||
self.share_inputs["eos_token_id"][:] = np.array(request.eos_token_ids, dtype="int64").reshape(-1, 1)
|
||||
self.share_inputs["top_p"][idx : idx + 1] = request.get("top_p", 0.7)
|
||||
self.share_inputs["top_p"][idx : idx + 1] = get_attr_from_request(request, "top_p", 0.7)
|
||||
self.share_inputs["top_k"][idx : idx + 1] = request.get("top_k", 0)
|
||||
self.share_inputs["temperature"][idx : idx + 1] = request.get("temperature", 0.95)
|
||||
self.share_inputs["penalty_score"][idx : idx + 1] = request.get("repetition_penalty", 1.0)
|
||||
self.share_inputs["frequency_score"][idx : idx + 1] = request.get("frequency_penalty", 0.0)
|
||||
self.share_inputs["presence_score"][idx : idx + 1] = request.get("presence_penalty", 0.0)
|
||||
self.share_inputs["min_p"][idx : idx + 1] = request.get("min_p", 0.0)
|
||||
|
||||
self.share_inputs["temperature"][idx : idx + 1] = get_attr_from_request(request, "temperature", 0.95)
|
||||
self.share_inputs["penalty_score"][idx : idx + 1] = get_attr_from_request(
|
||||
request, "repetition_penalty", 1.0
|
||||
)
|
||||
self.share_inputs["frequency_score"][idx : idx + 1] = get_attr_from_request(
|
||||
request, "frequency_penalty", 0.0
|
||||
)
|
||||
self.share_inputs["presence_score"][idx : idx + 1] = get_attr_from_request(
|
||||
request, "presence_penalty", 0.0
|
||||
)
|
||||
|
||||
self.share_inputs["min_dec_len"][idx : idx + 1] = request.get("min_tokens", 1)
|
||||
self.share_inputs["max_dec_len"][idx : idx + 1] = request.get("max_tokens", self.model_config.max_length)
|
||||
self.share_inputs["max_dec_len"][idx : idx + 1] = request.get(
|
||||
"max_tokens", self.model_config.max_model_len
|
||||
)
|
||||
self.share_inputs["stop_flags"][idx : idx + 1] = False
|
||||
|
||||
self.share_inputs["first_token_ids"][idx : idx + 1] = self.share_inputs["input_ids"][idx : idx + 1, :1]
|
||||
@@ -273,14 +295,18 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
for i in range(batch_size):
|
||||
idx = i
|
||||
self.share_inputs["input_ids"][idx : idx + 1, :input_length] = np.array([5] * input_length)
|
||||
self.share_inputs["prompt_ids"][idx : idx + 1, :input_length] = np.array([5] * input_length)
|
||||
self.share_inputs["eos_token_id"][:] = np.array([2], dtype="int64").reshape(-1, 1)
|
||||
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = input_length
|
||||
self.share_inputs["step_seq_lens_encoder"][idx : idx + 1] = input_length
|
||||
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = input_length
|
||||
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = 0
|
||||
self.share_inputs["prompt_lens"][idx : idx + 1] = 0
|
||||
self.share_inputs["step_idx"][idx : idx + 1] = 0
|
||||
self.share_inputs["max_dec_len"][idx : idx + 1] = max_dec_len
|
||||
self.share_inputs["min_dec_len"][idx : idx + 1] = max_dec_len
|
||||
self.share_inputs["stop_flags"][idx : idx + 1] = False
|
||||
self.share_inputs["temperature"][idx : idx + 1] = 1
|
||||
|
||||
self.share_inputs["first_token_ids"][idx : idx + 1] = self.share_inputs["input_ids"][idx : idx + 1, :1]
|
||||
self.share_inputs["ori_seq_lens_encoder"][idx : idx + 1] = input_length
|
||||
@@ -291,8 +317,8 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
)
|
||||
|
||||
def _init_share_inputs(self, max_num_seqs: int):
|
||||
"""Initialize all share buffers for model inputs.
|
||||
Note: In the future, we may abandon share buffers.
|
||||
"""
|
||||
Initialize all share buffers for model inputs.
|
||||
"""
|
||||
self.MAX_INFER_SEED = 9223372036854775806
|
||||
self.share_inputs = {}
|
||||
@@ -307,9 +333,15 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
self.parallel_config.pad_token_id,
|
||||
dtype="int64",
|
||||
)
|
||||
self.share_inputs["prompt_ids"] = paddle.full(
|
||||
[max_num_seqs, self.parallel_config.max_model_len],
|
||||
self.parallel_config.pad_token_id,
|
||||
dtype="int64",
|
||||
)
|
||||
self.share_inputs["eos_token_id"] = paddle.full([self.parallel_config.eos_tokens_lens, 1], 0, dtype="int64")
|
||||
self.share_inputs["top_p"] = paddle.full([max_num_seqs, 1], self.model_config.top_p, dtype="float32")
|
||||
self.share_inputs["top_k"] = paddle.full([max_num_seqs, 1], 0, dtype="int64")
|
||||
self.share_inputs["min_p"] = paddle.full([max_num_seqs, 1], 0.0, dtype="float32")
|
||||
self.share_inputs["temperature"] = paddle.full(
|
||||
[max_num_seqs, 1], self.model_config.temperature, dtype="float32"
|
||||
)
|
||||
@@ -326,14 +358,19 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
)
|
||||
|
||||
self.share_inputs["min_dec_len"] = paddle.full([max_num_seqs, 1], self.model_config.min_length, dtype="int64")
|
||||
self.share_inputs["max_dec_len"] = paddle.full([max_num_seqs, 1], self.model_config.max_length, dtype="int64")
|
||||
self.share_inputs["max_dec_len"] = paddle.full(
|
||||
[max_num_seqs, 1], self.model_config.max_model_len, dtype="int64"
|
||||
)
|
||||
self.share_inputs["min_length"] = paddle.full([max_num_seqs, 1], self.model_config.min_length, dtype="int64")
|
||||
self.share_inputs["max_length"] = paddle.full([max_num_seqs, 1], self.model_config.max_length, dtype="int64")
|
||||
self.share_inputs["max_length"] = paddle.full(
|
||||
[max_num_seqs, 1], self.model_config.max_model_len, dtype="int64"
|
||||
)
|
||||
self.share_inputs["seq_lens_this_time"] = paddle.full(max_num_seqs, 0, dtype="int32")
|
||||
self.share_inputs["seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
|
||||
self.share_inputs["seq_lens_decoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
|
||||
self.share_inputs["step_seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
|
||||
self.share_inputs["step_seq_lens_decoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
|
||||
self.share_inputs["prompt_lens"] = paddle.full([max_num_seqs, 1], 0, dtype="int64")
|
||||
self.share_inputs["step_idx"] = paddle.full([max_num_seqs, 1], 0, dtype="int64")
|
||||
self.share_inputs["not_need_stop"] = paddle.full([1], False, dtype="bool").cpu()
|
||||
self.share_inputs["stop_flags"] = paddle.full([max_num_seqs, 1], True, dtype="bool")
|
||||
@@ -362,7 +399,7 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
dtype="int64",
|
||||
)
|
||||
self.share_inputs["cum_offsets"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
|
||||
self.share_inputs["padding_offset"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
|
||||
self.share_inputs["batch_id_per_token"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
|
||||
self.share_inputs["cu_seqlens_q"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
|
||||
self.share_inputs["cu_seqlens_k"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
|
||||
# AttentionBackend buffers
|
||||
@@ -438,12 +475,12 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
)
|
||||
|
||||
def _prepare_inputs(self) -> None:
|
||||
"""prepare the model inputs"""
|
||||
"""Prepare the model inputs"""
|
||||
# Remove padding
|
||||
(
|
||||
ids_remove_padding,
|
||||
cum_offsets,
|
||||
padding_offset,
|
||||
batch_id_per_token,
|
||||
cu_seqlens_q,
|
||||
cu_seqlens_k,
|
||||
output_cum_offsets,
|
||||
@@ -459,7 +496,7 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
|
||||
self.share_inputs["ids_remove_padding"].copy_(ids_remove_padding, False)
|
||||
self.share_inputs["cum_offsets"].copy_(cum_offsets, False)
|
||||
self.share_inputs["padding_offset"].copy_(padding_offset, False)
|
||||
self.share_inputs["batch_id_per_token"].copy_(batch_id_per_token, False)
|
||||
self.share_inputs["cu_seqlens_q"].copy_(cu_seqlens_q, False)
|
||||
self.share_inputs["cu_seqlens_k"].copy_(cu_seqlens_k, False)
|
||||
|
||||
@@ -476,8 +513,11 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
temperature=self.share_inputs["temperature"],
|
||||
top_p=self.share_inputs["top_p"],
|
||||
top_k=self.share_inputs["top_k"],
|
||||
min_p=self.share_inputs["min_p"],
|
||||
step_idx=self.share_inputs["step_idx"],
|
||||
pre_token_ids=self.share_inputs["pre_ids"],
|
||||
prompt_ids=self.share_inputs["prompt_ids"],
|
||||
prompt_lens=self.share_inputs["prompt_lens"],
|
||||
frequency_penalties=self.share_inputs["frequency_score"],
|
||||
presence_penalties=self.share_inputs["presence_score"],
|
||||
repetition_penalties=self.share_inputs["penalty_score"],
|
||||
@@ -507,10 +547,10 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
logger.info(f"Model loading took {time_after_load - time_before_load} seconds")
|
||||
|
||||
# 4. Init proposer for speculative method
|
||||
self.init_speculative_proposer()
|
||||
self._init_speculative_proposer()
|
||||
|
||||
def get_model(self) -> nn.Layer:
|
||||
"""get current model"""
|
||||
"""Get current model"""
|
||||
return self.model
|
||||
|
||||
def initialize_forward_meta(self):
|
||||
@@ -528,36 +568,21 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
seq_lens_encoder=self.share_inputs["seq_lens_encoder"],
|
||||
seq_lens_decoder=self.share_inputs["seq_lens_decoder"],
|
||||
seq_lens_this_time=self.share_inputs["seq_lens_this_time"],
|
||||
cum_offsets=self.share_inputs["cum_offsets"],
|
||||
padding_offset=self.share_inputs["padding_offset"],
|
||||
batch_id_per_token=self.share_inputs["batch_id_per_token"],
|
||||
cu_seqlens_q=self.share_inputs["cu_seqlens_q"],
|
||||
cu_seqlens_k=self.share_inputs["cu_seqlens_k"],
|
||||
block_tables=self.share_inputs["block_tables"],
|
||||
caches=self.share_inputs["caches"],
|
||||
)
|
||||
|
||||
# Update Batch type for cuda graph
|
||||
is_decode_batch = not ((self.share_inputs["seq_lens_this_time"] > 1).sum() > 0)
|
||||
self.forward_meta.step_use_cudagraph = self.use_cudagraph and is_decode_batch
|
||||
|
||||
# Initialzie attention meta data
|
||||
for attn_backend in self.attn_backends:
|
||||
attn_backend.init_attention_metadata(self.forward_meta)
|
||||
|
||||
def clear_cache(self):
|
||||
"""Clear cached data from shared inputs and forward metadata."""
|
||||
self.share_inputs.pop("caches", None)
|
||||
if self.forward_meta is not None:
|
||||
self.forward_meta.clear_caches()
|
||||
|
||||
def clear_parameters(self, pid):
|
||||
""" "dynamic model loader use to clear parameters use for RL"""
|
||||
self.dynamic_weight_manager.clear_parameters(pid)
|
||||
self.clear_cache()
|
||||
self.dynamic_weight_manager._log_memory("dynamic weight manager clear all memory")
|
||||
|
||||
def update_parameters(self, pid):
|
||||
""" "dynamic model loader use to update parameters use for RL"""
|
||||
self.dynamic_weight_manager.update_parameters(pid)
|
||||
self.initialize_kv_cache()
|
||||
self.dynamic_weight_manager._log_memory("dynamic weight manager update all memory")
|
||||
|
||||
def initialize_kv_cache(self, profile: bool = False) -> None:
|
||||
"""
|
||||
Initialize kv cache
|
||||
@@ -606,13 +631,14 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
|
||||
def initialize_attn_backend(self) -> None:
|
||||
"""
|
||||
Initialize attention backends and forward metadata
|
||||
Initialize attention backends
|
||||
"""
|
||||
assert len(self.attn_backends) == 0
|
||||
|
||||
num_heads = self.model_config.num_attention_heads // self.parallel_config.tensor_parallel_size
|
||||
self.model_config.kv_num_heads = (
|
||||
int(self.model_config.num_key_value_heads) // self.parallel_config.tensor_parallel_size
|
||||
self.model_config.kv_num_heads = max(
|
||||
1,
|
||||
int(self.model_config.num_key_value_heads) // self.parallel_config.tensor_parallel_size,
|
||||
)
|
||||
head_dim = self.model_config.head_dim
|
||||
|
||||
@@ -642,6 +668,7 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
Args:
|
||||
num_tokens:
|
||||
expected_decode_len: Expected number of tokens generated
|
||||
in_capturing: Is cuda graph in capturing state
|
||||
"""
|
||||
self._dummy_prefill_inputs(
|
||||
num_tokens=num_tokens,
|
||||
@@ -656,20 +683,20 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
)
|
||||
while True:
|
||||
|
||||
# 1. Compute real num_tokens
|
||||
# 1. Initialize forward meta and attention meta data
|
||||
self._prepare_inputs()
|
||||
|
||||
# 2. Initialize attention backend and forward meta data
|
||||
# 2. Padding inputs for cuda graph
|
||||
self.forward_meta.step_use_cudagraph = in_capturing and self.forward_meta.step_use_cudagraph
|
||||
self.padding_cudagraph_inputs()
|
||||
|
||||
# 3. Prepare lora
|
||||
|
||||
# 4. Run model
|
||||
# 3. Run model
|
||||
model_output = self.model(
|
||||
ids_remove_padding=self.share_inputs["ids_remove_padding"],
|
||||
forward_meta=self.forward_meta,
|
||||
)
|
||||
|
||||
hiddden_states = rebuild_padding(
|
||||
hidden_states = rebuild_padding(
|
||||
model_output,
|
||||
self.share_inputs["cum_offsets"],
|
||||
self.share_inputs["seq_lens_this_time"],
|
||||
@@ -681,8 +708,8 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
self.parallel_config.max_model_len,
|
||||
)
|
||||
|
||||
# 5. Execute spec decode
|
||||
logits = self.model.compute_logits(hiddden_states)
|
||||
# 4. Execute spec decode
|
||||
logits = self.model.compute_logits(hidden_states)
|
||||
|
||||
if not self.speculative_decoding:
|
||||
set_value_by_flags_and_idx(
|
||||
@@ -711,7 +738,7 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
paddle.distributed.broadcast(self.share_inputs["step_idx"], 0)
|
||||
paddle.distributed.broadcast(self.share_inputs["stop_flags"], 0)
|
||||
|
||||
# 6. post process
|
||||
# 5. post process
|
||||
model_output_data = ModelOutputData(
|
||||
next_tokens=self.share_inputs["next_tokens"],
|
||||
stop_flags=self.share_inputs["stop_flags"],
|
||||
@@ -736,6 +763,10 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
),
|
||||
accept_tokens=(self.share_inputs["accept_tokens"] if self.speculative_decoding else None),
|
||||
accept_num=(self.share_inputs["accept_num"] if self.speculative_decoding else None),
|
||||
enable_thinking=(self.share_inputs["enable_thinking"] if self.enable_mm else None),
|
||||
think_end_id=(self.model_config.think_end_id if self.enable_mm else -1),
|
||||
need_think_end=(self.share_inputs["need_think_end"] if self.enable_mm else None),
|
||||
reasoning_index=(self.share_inputs["reasoning_index"] if self.enable_mm else None),
|
||||
)
|
||||
|
||||
post_process(
|
||||
@@ -760,11 +791,10 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
|
||||
def _update_chunked_prefill(self, tasks):
|
||||
"""
|
||||
更新chunked prefill相关参数
|
||||
Update chunked prefill related parameters
|
||||
"""
|
||||
if not self.parallel_config.enable_chunked_prefill:
|
||||
return
|
||||
|
||||
for task in tasks:
|
||||
if task.get("prefill_chunk_info", None) is None:
|
||||
continue
|
||||
@@ -785,25 +815,22 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
del self.restore_chunked_prefill_request[task.request_id]
|
||||
else:
|
||||
token_chunk_size = task.prefill_chunk_info[task.chunk_idx]
|
||||
|
||||
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = token_chunk_size
|
||||
self.share_inputs["input_ids"][idx, :token_chunk_size] = np.array(
|
||||
task.prompt_token_ids[start_idx : start_idx + token_chunk_size]
|
||||
)
|
||||
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = token_chunk_size
|
||||
self.share_inputs["step_idx"][idx : idx + 1] = 0
|
||||
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = start_idx + task.get("seq_lens_decoder", 0)
|
||||
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = token_chunk_size
|
||||
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = token_chunk_size
|
||||
self.share_inputs["prompt_lens"][idx : idx + 1] += token_chunk_size
|
||||
self.share_inputs["step_idx"][idx : idx + 1] = 0
|
||||
|
||||
if self.speculative_decoding and self.proposer.is_chunk_prefill_enabled():
|
||||
self.proposer.update_task_chunk_prefill(task)
|
||||
task.chunk_idx += 1
|
||||
|
||||
def _dummy_sampler_run(self) -> paddle.Tensor:
|
||||
""" """
|
||||
pass
|
||||
|
||||
def capture_model(self) -> None:
|
||||
"""
|
||||
Trigger CUDA Graph capture for all shapes in 'CudaGraphConfig.cudagraph_capture_sizes'
|
||||
Trigger CUDA Graph capture for all shapes in cuda graph capture list
|
||||
"""
|
||||
if not self.use_cudagraph:
|
||||
logger.info("Skipping CUDA graph capture. Please check GraphOptimizationConfig")
|
||||
@@ -813,7 +840,7 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
capture_sizes = self.cudagraph_capture_sizes.copy()
|
||||
for batch_size in sorted(capture_sizes, reverse=True):
|
||||
self._dummy_run(
|
||||
num_tokens=self.parallel_config.max_model_len,
|
||||
num_tokens=self.parallel_config.max_num_batched_tokens,
|
||||
batch_size=batch_size,
|
||||
in_capturing=True,
|
||||
expected_decode_len=expected_decode_len,
|
||||
@@ -823,7 +850,7 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
time_after_capture = time.perf_counter()
|
||||
logger.info(f"Cuda Graph capturing took {time_after_capture - time_before_capture} seconds")
|
||||
|
||||
def _get_skip_idx(self, model_forward_batch):
|
||||
def _get_skip_idx(self, model_forward_batch: Optional[List[Request]] = None):
|
||||
"""
|
||||
Get the index of the request that needs to be skipped during execution.
|
||||
Args:
|
||||
@@ -866,13 +893,12 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
self._execute_empty_input()
|
||||
return None
|
||||
|
||||
# 1. Prepare inputs of model and decoder.
|
||||
# sampler create async operation
|
||||
# 1. Prepare inputs of model and sampler.
|
||||
skip_idx_list = self._get_skip_idx(model_forward_batch)
|
||||
self._prepare_inputs()
|
||||
self.sampler.pre_process(skip_idx_list)
|
||||
|
||||
# 2. Padding inputs for cuda grph
|
||||
# 2. Padding inputs for cuda graph
|
||||
|
||||
# 3. Execute model
|
||||
model_output = self.model(
|
||||
@@ -880,7 +906,7 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
forward_meta=self.forward_meta,
|
||||
)
|
||||
|
||||
hiddden_states = rebuild_padding(
|
||||
hidden_states = rebuild_padding(
|
||||
model_output,
|
||||
self.share_inputs["cum_offsets"],
|
||||
self.share_inputs["seq_lens_this_time"],
|
||||
@@ -891,7 +917,7 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
)
|
||||
|
||||
# 4. Compute logits, Sample
|
||||
logits = self.model.compute_logits(hiddden_states)
|
||||
logits = self.model.compute_logits(hidden_states)
|
||||
|
||||
if not self.speculative_decoding:
|
||||
set_value_by_flags_and_idx(
|
||||
@@ -950,6 +976,10 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
),
|
||||
accept_tokens=(self.share_inputs["accept_tokens"] if self.speculative_decoding else None),
|
||||
accept_num=(self.share_inputs["accept_num"] if self.speculative_decoding else None),
|
||||
enable_thinking=(self.share_inputs["enable_thinking"] if self.enable_mm else None),
|
||||
think_end_id=(self.model_config.think_end_id if self.enable_mm else -1),
|
||||
need_think_end=(self.share_inputs["need_think_end"] if self.enable_mm else None),
|
||||
reasoning_index=(self.share_inputs["reasoning_index"] if self.enable_mm else None),
|
||||
)
|
||||
|
||||
if self.speculative_config.method in ["mtp"] and self.parallel_config.splitwise_role == "prefill":
|
||||
@@ -1009,7 +1039,7 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
raise ValueError(f"{type(self.model)} has no attribute 'empty_input_forward")
|
||||
|
||||
def profile_run(self) -> None:
|
||||
"""Execute a forward pass with dummy inputs to profile the memory usage of the model."""
|
||||
"""Execute a forward pass with dummy inputs to profile the memory usage of the model"""
|
||||
|
||||
# Initialize kv cache for profile run. After profile run kv cache will be reset.
|
||||
self.num_gcu_blocks = self.parallel_config.total_block_num
|
||||
@@ -1093,5 +1123,36 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
return required_memory
|
||||
|
||||
def not_need_stop(self) -> bool:
|
||||
""" """
|
||||
"""Stop decoding if the tensor meets the termination condition"""
|
||||
return self.share_inputs["not_need_stop"][0]
|
||||
|
||||
def clear_cache(self):
|
||||
"""Clear cached data from shared inputs and forward metadata"""
|
||||
self.share_inputs.pop("caches", None)
|
||||
if self.forward_meta is not None:
|
||||
self.forward_meta.clear_caches()
|
||||
|
||||
def clear_parameters(self, pid):
|
||||
""" " Dynamic model loader use to clear parameters use for RL"""
|
||||
self.dynamic_weight_manager.clear_parameters(pid)
|
||||
self.clear_cache()
|
||||
paddle.device.cuda.empty_cache()
|
||||
self.dynamic_weight_manager._log_memory("dynamic weight manager clear all memory")
|
||||
|
||||
def update_parameters(self, pid):
|
||||
""" " Dynamic model loader use to update parameters use for RL"""
|
||||
self.dynamic_weight_manager.update_parameters(pid)
|
||||
self.initialize_kv_cache()
|
||||
self.dynamic_weight_manager._log_memory("dynamic weight manager update all memory")
|
||||
|
||||
def padding_cudagraph_inputs(self) -> None:
|
||||
"""
|
||||
Clean buffers used for the CUDA graph when replaying the CUDA graph with the padded batch.
|
||||
In FastDeploy, almost all input tensors have a buffer. So, just keep the buffer clean when replaying the CUDA graph with the padded batch.
|
||||
"""
|
||||
# TODO(gongshaotian): Use more efficient implementation
|
||||
if self.forward_meta.step_use_cudagraph:
|
||||
num_empty_batch = (self.forward_meta.seq_lens_this_time == 0).sum()
|
||||
for i in range(1, num_empty_batch + 1):
|
||||
self.forward_meta.decoder_batch_ids[-i] = 0
|
||||
self.forward_meta.decoder_tile_ids_per_batch[-i] = 0
|
||||
|
Reference in New Issue
Block a user