Revert "[Benchmark]Benchmark cpp for YOLOv5" (#1250)

Revert "[Benchmark]Benchmark cpp for YOLOv5 (#1224)"

This reverts commit c487359e33.
This commit is contained in:
Jason
2023-02-07 22:14:48 +08:00
committed by GitHub
parent c487359e33
commit c25aa71fa9
27 changed files with 44 additions and 422 deletions

View File

@@ -17,8 +17,7 @@ import cv2
import os
import numpy as np
import time
from tqdm import tqdm
from tqdm import tqdm
def parse_arguments():
import argparse
@@ -39,19 +38,19 @@ def parse_arguments():
"--profile_mode",
type=str,
default="runtime",
help="runtime or end2end.")
help="runtime or end2end.")
parser.add_argument(
"--repeat",
required=True,
type=int,
default=1000,
help="number of repeats for profiling.")
help="number of repeats for profiling.")
parser.add_argument(
"--warmup",
required=True,
type=int,
default=50,
help="number of warmup for profiling.")
help="number of warmup for profiling.")
parser.add_argument(
"--device",
default="cpu",
@@ -75,7 +74,7 @@ def parse_arguments():
"--include_h2d_d2h",
type=ast.literal_eval,
default=False,
help="whether run profiling with h2d and d2h")
help="whether run profiling with h2d and d2h")
args = parser.parse_args()
return args
@@ -86,7 +85,7 @@ def build_option(args):
backend = args.backend
enable_trt_fp16 = args.enable_trt_fp16
if args.profile_mode == "runtime":
option.enable_profiling(args.include_h2d_d2h, args.repeat, args.warmup)
option.enable_profiling(args.include_h2d_d2h, args.repeat, args.warmup)
option.set_cpu_thread_num(args.cpu_num_thread)
if device == "gpu":
option.use_gpu()
@@ -275,27 +274,25 @@ if __name__ == '__main__':
enable_gpu = args.device == "gpu"
monitor = Monitor(enable_gpu, gpu_id)
monitor.start()
im_ori = cv2.imread(args.image)
if args.profile_mode == "runtime":
result = model.predict(im_ori)
profile_time = model.get_profile_time()
dump_result["runtime"] = profile_time * 1000
f.writelines("Runtime(ms): {} \n".format(
str(dump_result["runtime"])))
f.writelines("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
print("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
else:
# end2end
for i in range(args.warmup):
result = model.predict(im_ori)
start = time.time()
for i in tqdm(range(args.repeat)):
result = model.predict(im_ori)
end = time.time()
dump_result["end2end"] = ((end - start) / args.repeat) * 1000.0
f.writelines("End2End(ms): {} \n".format(
str(dump_result["end2end"])))
f.writelines("End2End(ms): {} \n".format(str(dump_result["end2end"])))
print("End2End(ms): {} \n".format(str(dump_result["end2end"])))
if enable_collect_memory_info:
@@ -307,7 +304,7 @@ if __name__ == '__main__':
'memory.used'] if 'gpu' in mem_info else 0
dump_result["gpu_util"] = mem_info['gpu'][
'utilization.gpu'] if 'gpu' in mem_info else 0
if enable_collect_memory_info:
f.writelines("cpu_rss_mb: {} \n".format(
str(dump_result["cpu_rss_mb"])))

View File

@@ -17,9 +17,9 @@ import cv2
import os
import numpy as np
import time
from sympy import EX
from tqdm import tqdm
def parse_arguments():
import argparse
import ast
@@ -39,19 +39,19 @@ def parse_arguments():
"--profile_mode",
type=str,
default="runtime",
help="runtime or end2end.")
help="runtime or end2end.")
parser.add_argument(
"--repeat",
required=True,
type=int,
default=1000,
help="number of repeats for profiling.")
help="number of repeats for profiling.")
parser.add_argument(
"--warmup",
required=True,
type=int,
default=50,
help="number of warmup for profiling.")
help="number of warmup for profiling.")
parser.add_argument(
"--device",
default="cpu",
@@ -70,7 +70,7 @@ def parse_arguments():
"--enable_lite_fp16",
type=ast.literal_eval,
default=False,
help="whether enable fp16 in Paddle Lite backend")
help="whether enable fp16 in Paddle Lite backend")
parser.add_argument(
"--enable_collect_memory_info",
type=ast.literal_eval,
@@ -80,7 +80,7 @@ def parse_arguments():
"--include_h2d_d2h",
type=ast.literal_eval,
default=False,
help="whether run profiling with h2d and d2h")
help="whether run profiling with h2d and d2h")
args = parser.parse_args()
return args
@@ -92,7 +92,7 @@ def build_option(args):
enable_trt_fp16 = args.enable_trt_fp16
enable_lite_fp16 = args.enable_lite_fp16
if args.profile_mode == "runtime":
option.enable_profiling(args.include_h2d_d2h, args.repeat, args.warmup)
option.enable_profiling(args.include_h2d_d2h, args.repeat, args.warmup)
option.set_cpu_thread_num(args.cpu_num_thread)
if device == "gpu":
option.use_gpu()
@@ -149,7 +149,7 @@ def build_option(args):
else:
raise Exception(
"While inference with CPU, only support default/ort/lite/paddle now, {} is not supported.".
format(backend))
format(backend))
elif device == "ascend":
option.use_ascend()
if backend == "lite":
@@ -161,11 +161,11 @@ def build_option(args):
else:
raise Exception(
"While inference with CPU, only support default/lite now, {} is not supported.".
format(backend))
format(backend))
else:
raise Exception(
"Only support device CPU/GPU/Kunlunxin/Ascend now, {} is not supported.".
format(device))
"Only support device CPU/GPU/Kunlunxin/Ascend now, {} is not supported.".format(
device))
return option
@@ -340,21 +340,19 @@ if __name__ == '__main__':
result = model.predict(im_ori)
profile_time = model.get_profile_time()
dump_result["runtime"] = profile_time * 1000
f.writelines("Runtime(ms): {} \n".format(
str(dump_result["runtime"])))
f.writelines("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
print("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
else:
# end2end
for i in range(args.warmup):
result = model.predict(im_ori)
start = time.time()
for i in tqdm(range(args.repeat)):
result = model.predict(im_ori)
end = time.time()
dump_result["end2end"] = ((end - start) / args.repeat) * 1000.0
f.writelines("End2End(ms): {} \n".format(
str(dump_result["end2end"])))
f.writelines("End2End(ms): {} \n".format(str(dump_result["end2end"])))
print("End2End(ms): {} \n".format(str(dump_result["end2end"])))
if enable_collect_memory_info:
@@ -366,7 +364,7 @@ if __name__ == '__main__':
'memory.used'] if 'gpu' in mem_info else 0
dump_result["gpu_util"] = mem_info['gpu'][
'utilization.gpu'] if 'gpu' in mem_info else 0
if enable_collect_memory_info:
f.writelines("cpu_rss_mb: {} \n".format(
str(dump_result["cpu_rss_mb"])))

View File

@@ -1,17 +0,0 @@
PROJECT(infer_demo C CXX)
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
# specify the decompress directory of FastDeploy SDK
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
include(${FASTDEPLOY_INSTALL_DIR}/utils/gflags.cmake)
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
include_directories(${FASTDEPLOY_INCS})
add_executable(benchmark_yolov5 ${PROJECT_SOURCE_DIR}/benchmark_yolov5.cc)
if(UNIX AND (NOT APPLE) AND (NOT ANDROID))
target_link_libraries(benchmark_yolov5 ${FASTDEPLOY_LIBS} gflags pthread)
else()
target_link_libraries(benchmark_yolov5 ${FASTDEPLOY_LIBS} gflags)
endif()

View File

@@ -1,110 +0,0 @@
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/benchmark/utils.h"
#include "fastdeploy/vision.h"
#include "flags.h"
bool RunModel(std::string model_file, std::string image_file, size_t warmup,
size_t repeats, size_t dump_period, std::string cpu_mem_file_name,
std::string gpu_mem_file_name) {
// Initialization
auto option = fastdeploy::RuntimeOption();
if (!CreateRuntimeOption(&option)) {
PrintUsage();
return false;
}
if (FLAGS_profile_mode == "runtime") {
option.EnableProfiling(FLAGS_include_h2d_d2h, repeats, warmup);
}
auto model = fastdeploy::vision::detection::YOLOv5(model_file, "", option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return false;
}
auto im = cv::imread(image_file);
// For Runtime
if (FLAGS_profile_mode == "runtime") {
fastdeploy::vision::DetectionResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return false;
}
double profile_time = model.GetProfileTime() * 1000;
std::cout << "Runtime(ms): " << profile_time << "ms." << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
} else {
// For End2End
// Step1: warm up for warmup times
std::cout << "Warmup " << warmup << " times..." << std::endl;
for (int i = 0; i < warmup; i++) {
fastdeploy::vision::DetectionResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return false;
}
}
std::vector<float> end2end_statis;
// Step2: repeat for repeats times
std::cout << "Counting time..." << std::endl;
fastdeploy::TimeCounter tc;
fastdeploy::vision::DetectionResult res;
for (int i = 0; i < repeats; i++) {
if (FLAGS_collect_memory_info && i % dump_period == 0) {
fastdeploy::benchmark::DumpCurrentCpuMemoryUsage(cpu_mem_file_name);
fastdeploy::benchmark::DumpCurrentGpuMemoryUsage(gpu_mem_file_name,
FLAGS_device_id);
}
tc.Start();
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return false;
}
tc.End();
end2end_statis.push_back(tc.Duration() * 1000);
}
float end2end = std::accumulate(end2end_statis.end() - repeats,
end2end_statis.end(), 0.f) /
repeats;
std::cout << "End2End(ms): " << end2end << "ms." << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
return true;
}
int main(int argc, char* argv[]) {
google::ParseCommandLineFlags(&argc, &argv, true);
int repeats = FLAGS_repeat;
int warmup = FLAGS_warmup;
int dump_period = FLAGS_dump_period;
std::string cpu_mem_file_name = "result_cpu.txt";
std::string gpu_mem_file_name = "result_gpu.txt";
// Run model
if (RunModel(FLAGS_model, FLAGS_image, warmup, repeats, dump_period,
cpu_mem_file_name, gpu_mem_file_name) != true) {
exit(1);
}
if (FLAGS_collect_memory_info) {
float cpu_mem = fastdeploy::benchmark::GetCpuMemoryUsage(cpu_mem_file_name);
float gpu_mem = fastdeploy::benchmark::GetGpuMemoryUsage(gpu_mem_file_name);
std::cout << "cpu_rss_mb: " << cpu_mem << "MB." << std::endl;
std::cout << "gpu_rss_mb: " << gpu_mem << "MB." << std::endl;
}
return 0;
}

View File

@@ -1,99 +0,0 @@
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "gflags/gflags.h"
#include "fastdeploy/utils/perf.h"
DEFINE_string(model, "", "Directory of the inference model.");
DEFINE_string(image, "", "Path of the image file.");
DEFINE_string(device, "cpu",
"Type of inference device, support 'cpu' or 'gpu'.");
DEFINE_int32(device_id, 0, "device(gpu) id.");
DEFINE_int32(warmup, 200, "Number of warmup for profiling.");
DEFINE_int32(repeat, 1000, "Number of repeats for profiling.");
DEFINE_string(profile_mode, "runtime", "runtime or end2end.");
DEFINE_string(backend, "default",
"The inference runtime backend, support: ['default', 'ort', "
"'paddle', 'ov', 'trt', 'paddle_trt']");
DEFINE_int32(cpu_thread_nums, 8, "Set numbers of cpu thread.");
DEFINE_bool(
include_h2d_d2h, false, "Whether run profiling with h2d and d2h.");
DEFINE_bool(
use_fp16, false,
"Whether to use FP16 mode, only support 'trt' and 'paddle_trt' backend");
DEFINE_bool(
collect_memory_info, false, "Whether to collect memory info");
DEFINE_int32(dump_period, 100, "How often to collect memory info.");
void PrintUsage() {
std::cout << "Usage: infer_demo --model model_path --image img_path --device "
"[cpu|gpu] --backend "
"[default|ort|paddle|ov|trt|paddle_trt] "
"--use_fp16 false"
<< std::endl;
std::cout << "Default value of device: cpu" << std::endl;
std::cout << "Default value of backend: default" << std::endl;
std::cout << "Default value of use_fp16: false" << std::endl;
}
bool CreateRuntimeOption(fastdeploy::RuntimeOption* option) {
if (FLAGS_device == "gpu") {
option->UseGpu();
if (FLAGS_backend == "ort") {
option->UseOrtBackend();
} else if (FLAGS_backend == "paddle") {
option->UsePaddleInferBackend();
} else if (FLAGS_backend == "trt" || FLAGS_backend == "paddle_trt") {
option->UseTrtBackend();
option->SetTrtInputShape("input", {1, 3, 112, 112});
if (FLAGS_backend == "paddle_trt") {
option->EnablePaddleToTrt();
}
if (FLAGS_use_fp16) {
option->EnableTrtFP16();
}
} else if (FLAGS_backend == "default") {
return true;
} else {
std::cout << "While inference with GPU, only support "
"default/ort/paddle/trt/paddle_trt now, "
<< FLAGS_backend << " is not supported." << std::endl;
return false;
}
} else if (FLAGS_device == "cpu") {
option->SetCpuThreadNum(FLAGS_cpu_thread_nums);
if (FLAGS_backend == "ort") {
option->UseOrtBackend();
} else if (FLAGS_backend == "ov") {
option->UseOpenVINOBackend();
} else if (FLAGS_backend == "paddle") {
option->UsePaddleInferBackend();
} else if (FLAGS_backend == "default") {
return true;
} else {
std::cout << "While inference with CPU, only support "
"default/ort/ov/paddle now, "
<< FLAGS_backend << " is not supported." << std::endl;
return false;
}
} else {
std::cerr << "Only support device CPU/GPU now, " << FLAGS_device
<< " is not supported." << std::endl;
return false;
}
return true;
}

10
fastdeploy/benchmark/benchmark.h Executable file → Normal file
View File

@@ -18,7 +18,7 @@
#include "fastdeploy/benchmark/option.h"
#include "fastdeploy/benchmark/results.h"
#ifdef ENABLE_BENCHMARK
#ifdef ENABLE_BENCHMARK
#define __RUNTIME_PROFILE_LOOP_BEGIN(option, base_loop) \
int __p_loop = (base_loop); \
const bool __p_enable_profile = option.enable_profile; \
@@ -75,12 +75,12 @@
result.time_of_runtime = \
__p_tc_duration_h / static_cast<double>(__p_repeats_h); \
} \
}
}
#else
#define __RUNTIME_PROFILE_LOOP_BEGIN(option, base_loop) \
for (int __p_i = 0; __p_i < (base_loop); ++__p_i) {
for (int __p_i = 0; __p_i < (base_loop); ++ __p_i) {
#define __RUNTIME_PROFILE_LOOP_END(result) }
#define __RUNTIME_PROFILE_LOOP_H2D_D2H_BEGIN(option, base_loop) \
for (int __p_i_h = 0; __p_i_h < (base_loop); ++__p_i_h) {
for (int __p_i_h = 0; __p_i_h < (base_loop); ++ __p_i_h) {
#define __RUNTIME_PROFILE_LOOP_H2D_D2H_END(result) }
#endif
#endif

26
fastdeploy/benchmark/option.h Executable file → Normal file
View File

@@ -26,22 +26,22 @@ struct BenchmarkOption {
int warmup = 50; ///< Warmup for backend inference.
int repeats = 100; ///< Repeats for backend inference.
bool enable_profile = false; ///< Whether to use profile or not.
bool include_h2d_d2h = false; ///< Whether to include time of H2D_D2H for time of runtime. // NOLINT
bool include_h2d_d2h = false; ///< Whether to include time of H2D_D2H for time of runtime.
friend std::ostream& operator<<(
std::ostream& output, const BenchmarkOption &option) {
if (!option.include_h2d_d2h) {
output << "Running profiling for Runtime "
<< "without H2D and D2H, ";
} else {
output << "Running profiling for Runtime "
<< "with H2D and D2H, ";
}
output << "Repeats: " << option.repeats << ", "
<< "Warmup: " << option.warmup;
return output;
if (!option.include_h2d_d2h) {
output << "Running profiling for Runtime "
<< "without H2D and D2H, ";
} else {
output << "Running profiling for Runtime "
<< "with H2D and D2H, ";
}
output << "Repeats: " << option.repeats << ", "
<< "Warmup: " << option.warmup;
return output;
}
};
} // namespace benchmark
} // namespace fastdeploy
} // namespace benchmark
} // namespace fastdeploy

View File

@@ -1,93 +0,0 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/benchmark/utils.h"
namespace fastdeploy {
namespace benchmark {
void DumpCurrentCpuMemoryUsage(const std::string& name) {
int iPid = static_cast<int>(getpid());
std::string command = "pmap -x " + std::to_string(iPid) + " | grep total";
FILE* pp = popen(command.data(), "r");
if (!pp) return;
char tmp[1024];
while (fgets(tmp, sizeof(tmp), pp) != NULL) {
std::ofstream write;
write.open(name, std::ios::app);
write << tmp;
write.close();
}
pclose(pp);
return;
}
void DumpCurrentGpuMemoryUsage(const std::string& name, int device_id) {
std::string command = "nvidia-smi --id=" + std::to_string(device_id) +
" --query-gpu=index,uuid,name,timestamp,memory.total,"
"memory.free,memory.used,utilization.gpu,utilization."
"memory --format=csv,noheader,nounits";
FILE* pp = popen(command.data(), "r");
if (!pp) return;
char tmp[1024];
while (fgets(tmp, sizeof(tmp), pp) != NULL) {
std::ofstream write;
write.open(name, std::ios::app);
write << tmp;
write.close();
}
pclose(pp);
return;
}
float GetCpuMemoryUsage(const std::string& name) {
std::ifstream read(name);
std::string line;
float max_cpu_mem = -1;
while (getline(read, line)) {
std::stringstream ss(line);
std::string tmp;
std::vector<std::string> nums;
while (getline(ss, tmp, ' ')) {
tmp = strip(tmp);
if (tmp.empty()) continue;
nums.push_back(tmp);
}
max_cpu_mem = std::max(max_cpu_mem, stof(nums[3]));
}
return max_cpu_mem / 1024;
}
float GetGpuMemoryUsage(const std::string& name) {
std::ifstream read(name);
std::string line;
float max_gpu_mem = -1;
while (getline(read, line)) {
std::stringstream ss(line);
std::string tmp;
std::vector<std::string> nums;
while (getline(ss, tmp, ',')) {
tmp = strip(tmp);
if (tmp.empty()) continue;
nums.push_back(tmp);
}
max_gpu_mem = std::max(max_gpu_mem, stof(nums[6]));
}
return max_gpu_mem;
}
} // namespace benchmark
} // namespace fastdeploy

View File

@@ -1,53 +0,0 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <sys/types.h>
#include <unistd.h>
#include <cmath>
#include "fastdeploy/utils/utils.h"
namespace fastdeploy {
namespace benchmark {
// Remove the ch characters at both ends of str
std::string strip(const std::string& str, char ch = ' ') {
int i = 0;
while (str[i] == ch) {
i++;
}
int j = str.size() - 1;
while (str[j] == ch) {
j--;
}
return str.substr(i, j + 1 - i);
}
// Record current cpu memory usage into file
FASTDEPLOY_DECL void DumpCurrentCpuMemoryUsage(const std::string& name);
// Record current gpu memory usage into file
FASTDEPLOY_DECL void DumpCurrentGpuMemoryUsage(const std::string& name,
int device_id);
// Get Max cpu memory usage
FASTDEPLOY_DECL float GetCpuMemoryUsage(const std::string& name);
// Get Max gpu memory usage
FASTDEPLOY_DECL float GetGpuMemoryUsage(const std::string& name);
} // namespace benchmark
} // namespace fastdeploy

View File

@@ -81,5 +81,4 @@ struct LiteBackendOption {
nnadapter_dynamic_shape_info = {{"", {{0}}}};
std::vector<std::string> nnadapter_device_names = {};
};
} // namespace fastdeploy

0
fastdeploy/runtime/runtime_option.h Executable file → Normal file
View File

0
fastdeploy/utils/utils.h Executable file → Normal file
View File