mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
Revert "[Benchmark]Benchmark cpp for YOLOv5" (#1250)
Revert "[Benchmark]Benchmark cpp for YOLOv5 (#1224)"
This reverts commit c487359e33
.
This commit is contained in:
@@ -1,321 +0,0 @@
|
||||
import numpy as np
|
||||
import os
|
||||
import time
|
||||
import distutils.util
|
||||
import sys
|
||||
import json
|
||||
|
||||
import fastdeploy as fd
|
||||
from fastdeploy.text import UIEModel, SchemaLanguage
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model_dir",
|
||||
required=True,
|
||||
help="The directory of model and tokenizer.")
|
||||
parser.add_argument(
|
||||
"--data_path", required=True, help="The path of uie data.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default='cpu',
|
||||
choices=['gpu', 'cpu'],
|
||||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||
parser.add_argument(
|
||||
"--backend",
|
||||
type=str,
|
||||
default='paddle',
|
||||
choices=['ort', 'paddle', 'trt', 'paddle_trt', 'ov'],
|
||||
help="The inference runtime backend.")
|
||||
parser.add_argument(
|
||||
"--device_id", type=int, default=0, help="device(gpu) id")
|
||||
parser.add_argument(
|
||||
"--batch_size", type=int, default=1, help="The batch size of data.")
|
||||
parser.add_argument(
|
||||
"--max_length",
|
||||
type=int,
|
||||
default=128,
|
||||
help="The max length of sequence.")
|
||||
parser.add_argument(
|
||||
"--cpu_num_threads",
|
||||
type=int,
|
||||
default=8,
|
||||
help="The number of threads when inferring on cpu.")
|
||||
parser.add_argument(
|
||||
"--enable_trt_fp16",
|
||||
type=distutils.util.strtobool,
|
||||
default=False,
|
||||
help="whether enable fp16 in trt backend")
|
||||
parser.add_argument(
|
||||
"--epoch", type=int, default=1, help="The epoch of test")
|
||||
parser.add_argument(
|
||||
"--enable_collect_memory_info",
|
||||
type=ast.literal_eval,
|
||||
default=False,
|
||||
help="whether enable collect memory info")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
if args.device == 'cpu':
|
||||
option.use_cpu()
|
||||
option.set_cpu_thread_num(args.cpu_num_threads)
|
||||
else:
|
||||
option.use_gpu(args.device_id)
|
||||
if args.backend == 'paddle':
|
||||
option.use_paddle_backend()
|
||||
elif args.backend == 'ort':
|
||||
option.use_ort_backend()
|
||||
elif args.backend == 'ov':
|
||||
option.use_openvino_backend()
|
||||
else:
|
||||
option.use_trt_backend()
|
||||
if args.backend == 'paddle_trt':
|
||||
option.enable_paddle_to_trt()
|
||||
option.enable_paddle_trt_collect_shape()
|
||||
trt_file = os.path.join(args.model_dir, "infer.trt")
|
||||
option.set_trt_input_shape(
|
||||
'input_ids',
|
||||
min_shape=[1, 1],
|
||||
opt_shape=[args.batch_size, args.max_length // 2],
|
||||
max_shape=[args.batch_size, args.max_length])
|
||||
option.set_trt_input_shape(
|
||||
'token_type_ids',
|
||||
min_shape=[1, 1],
|
||||
opt_shape=[args.batch_size, args.max_length // 2],
|
||||
max_shape=[args.batch_size, args.max_length])
|
||||
option.set_trt_input_shape(
|
||||
'pos_ids',
|
||||
min_shape=[1, 1],
|
||||
opt_shape=[args.batch_size, args.max_length // 2],
|
||||
max_shape=[args.batch_size, args.max_length])
|
||||
option.set_trt_input_shape(
|
||||
'att_mask',
|
||||
min_shape=[1, 1],
|
||||
opt_shape=[args.batch_size, args.max_length // 2],
|
||||
max_shape=[args.batch_size, args.max_length])
|
||||
if args.enable_trt_fp16:
|
||||
option.enable_trt_fp16()
|
||||
trt_file = trt_file + ".fp16"
|
||||
option.set_trt_cache_file(trt_file)
|
||||
return option
|
||||
|
||||
|
||||
class StatBase(object):
|
||||
"""StatBase"""
|
||||
nvidia_smi_path = "nvidia-smi"
|
||||
gpu_keys = ('index', 'uuid', 'name', 'timestamp', 'memory.total',
|
||||
'memory.free', 'memory.used', 'utilization.gpu',
|
||||
'utilization.memory')
|
||||
nu_opt = ',nounits'
|
||||
cpu_keys = ('cpu.util', 'memory.util', 'memory.used')
|
||||
|
||||
|
||||
class Monitor(StatBase):
|
||||
"""Monitor"""
|
||||
|
||||
def __init__(self, use_gpu=False, gpu_id=0, interval=0.1):
|
||||
self.result = {}
|
||||
self.gpu_id = gpu_id
|
||||
self.use_gpu = use_gpu
|
||||
self.interval = interval
|
||||
self.cpu_stat_q = multiprocessing.Queue()
|
||||
|
||||
def start(self):
|
||||
cmd = '%s --id=%s --query-gpu=%s --format=csv,noheader%s -lms 50' % (
|
||||
StatBase.nvidia_smi_path, self.gpu_id, ','.join(StatBase.gpu_keys),
|
||||
StatBase.nu_opt)
|
||||
if self.use_gpu:
|
||||
self.gpu_stat_worker = subprocess.Popen(
|
||||
cmd,
|
||||
stderr=subprocess.STDOUT,
|
||||
stdout=subprocess.PIPE,
|
||||
shell=True,
|
||||
close_fds=True,
|
||||
preexec_fn=os.setsid)
|
||||
# cpu stat
|
||||
pid = os.getpid()
|
||||
self.cpu_stat_worker = multiprocessing.Process(
|
||||
target=self.cpu_stat_func,
|
||||
args=(self.cpu_stat_q, pid, self.interval))
|
||||
self.cpu_stat_worker.start()
|
||||
|
||||
def stop(self):
|
||||
try:
|
||||
if self.use_gpu:
|
||||
os.killpg(self.gpu_stat_worker.pid, signal.SIGUSR1)
|
||||
# os.killpg(p.pid, signal.SIGTERM)
|
||||
self.cpu_stat_worker.terminate()
|
||||
self.cpu_stat_worker.join(timeout=0.01)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
return
|
||||
|
||||
# gpu
|
||||
if self.use_gpu:
|
||||
lines = self.gpu_stat_worker.stdout.readlines()
|
||||
lines = [
|
||||
line.strip().decode("utf-8") for line in lines
|
||||
if line.strip() != ''
|
||||
]
|
||||
gpu_info_list = [{
|
||||
k: v
|
||||
for k, v in zip(StatBase.gpu_keys, line.split(', '))
|
||||
} for line in lines]
|
||||
if len(gpu_info_list) == 0:
|
||||
return
|
||||
result = gpu_info_list[0]
|
||||
for item in gpu_info_list:
|
||||
for k in item.keys():
|
||||
if k not in ["name", "uuid", "timestamp"]:
|
||||
result[k] = max(int(result[k]), int(item[k]))
|
||||
else:
|
||||
result[k] = max(result[k], item[k])
|
||||
self.result['gpu'] = result
|
||||
|
||||
# cpu
|
||||
cpu_result = {}
|
||||
if self.cpu_stat_q.qsize() > 0:
|
||||
cpu_result = {
|
||||
k: v
|
||||
for k, v in zip(StatBase.cpu_keys, self.cpu_stat_q.get())
|
||||
}
|
||||
while not self.cpu_stat_q.empty():
|
||||
item = {
|
||||
k: v
|
||||
for k, v in zip(StatBase.cpu_keys, self.cpu_stat_q.get())
|
||||
}
|
||||
for k in StatBase.cpu_keys:
|
||||
cpu_result[k] = max(cpu_result[k], item[k])
|
||||
cpu_result['name'] = cpuinfo.get_cpu_info()['brand_raw']
|
||||
self.result['cpu'] = cpu_result
|
||||
|
||||
def output(self):
|
||||
return self.result
|
||||
|
||||
def cpu_stat_func(self, q, pid, interval=0.0):
|
||||
"""cpu stat function"""
|
||||
stat_info = psutil.Process(pid)
|
||||
while True:
|
||||
# pid = os.getpid()
|
||||
cpu_util, mem_util, mem_use = stat_info.cpu_percent(
|
||||
), stat_info.memory_percent(), round(stat_info.memory_info().rss /
|
||||
1024.0 / 1024.0, 4)
|
||||
q.put([cpu_util, mem_util, mem_use])
|
||||
time.sleep(interval)
|
||||
return
|
||||
|
||||
|
||||
def get_dataset(data_path, max_seq_len=512):
|
||||
json_lines = []
|
||||
with open(data_path, 'r', encoding='utf-8') as f:
|
||||
for line in f:
|
||||
json_line = json.loads(line)
|
||||
content = json_line['content'].strip()
|
||||
prompt = json_line['prompt']
|
||||
# Model Input is aslike: [CLS] Prompt [SEP] Content [SEP]
|
||||
# It include three summary tokens.
|
||||
if max_seq_len <= len(prompt) + 3:
|
||||
raise ValueError(
|
||||
"The value of max_seq_len is too small, please set a larger value"
|
||||
)
|
||||
json_lines.append(json_line)
|
||||
|
||||
return json_lines
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_arguments()
|
||||
runtime_option = build_option(args)
|
||||
model_path = os.path.join(args.model_dir, "inference.pdmodel")
|
||||
param_path = os.path.join(args.model_dir, "inference.pdiparams")
|
||||
vocab_path = os.path.join(args.model_dir, "vocab.txt")
|
||||
|
||||
gpu_id = args.device_id
|
||||
enable_collect_memory_info = args.enable_collect_memory_info
|
||||
dump_result = dict()
|
||||
end2end_statis = list()
|
||||
cpu_mem = list()
|
||||
gpu_mem = list()
|
||||
gpu_util = list()
|
||||
if args.device == "cpu":
|
||||
file_path = args.model_dir + "_model_" + args.backend + "_" + \
|
||||
args.device + "_" + str(args.cpu_num_threads) + ".txt"
|
||||
else:
|
||||
if args.enable_trt_fp16:
|
||||
file_path = args.model_dir + "_model_" + \
|
||||
args.backend + "_fp16_" + args.device + ".txt"
|
||||
else:
|
||||
file_path = args.model_dir + "_model_" + args.backend + "_" + args.device + ".txt"
|
||||
f = open(file_path, "w")
|
||||
f.writelines("===={}====: \n".format(os.path.split(file_path)[-1][:-4]))
|
||||
|
||||
ds = get_dataset(args.data_path)
|
||||
schema = ["时间"]
|
||||
uie = UIEModel(
|
||||
model_path,
|
||||
param_path,
|
||||
vocab_path,
|
||||
position_prob=0.5,
|
||||
max_length=args.max_length,
|
||||
batch_size=args.batch_size,
|
||||
schema=schema,
|
||||
runtime_option=runtime_option,
|
||||
schema_language=SchemaLanguage.ZH)
|
||||
|
||||
try:
|
||||
if enable_collect_memory_info:
|
||||
import multiprocessing
|
||||
import subprocess
|
||||
import psutil
|
||||
import signal
|
||||
import cpuinfo
|
||||
enable_gpu = args.device == "gpu"
|
||||
monitor = Monitor(enable_gpu, gpu_id)
|
||||
monitor.start()
|
||||
uie.enable_record_time_of_runtime()
|
||||
|
||||
for ep in range(args.epoch):
|
||||
for i, sample in enumerate(ds):
|
||||
curr_start = time.time()
|
||||
uie.set_schema([sample['prompt']])
|
||||
result = uie.predict([sample['content']])
|
||||
end2end_statis.append(time.time() - curr_start)
|
||||
runtime_statis = uie.print_statis_info_of_runtime()
|
||||
|
||||
warmup_iter = args.epoch * len(ds) // 5
|
||||
|
||||
end2end_statis_repeat = end2end_statis[warmup_iter:]
|
||||
if enable_collect_memory_info:
|
||||
monitor.stop()
|
||||
mem_info = monitor.output()
|
||||
dump_result["cpu_rss_mb"] = mem_info['cpu'][
|
||||
'memory.used'] if 'cpu' in mem_info else 0
|
||||
dump_result["gpu_rss_mb"] = mem_info['gpu'][
|
||||
'memory.used'] if 'gpu' in mem_info else 0
|
||||
dump_result["gpu_util"] = mem_info['gpu'][
|
||||
'utilization.gpu'] if 'gpu' in mem_info else 0
|
||||
|
||||
dump_result["runtime"] = runtime_statis["avg_time"] * 1000
|
||||
dump_result["end2end"] = np.mean(end2end_statis_repeat) * 1000
|
||||
|
||||
time_cost_str = f"Runtime(ms): {dump_result['runtime']}\n" \
|
||||
f"End2End(ms): {dump_result['end2end']}\n"
|
||||
f.writelines(time_cost_str)
|
||||
print(time_cost_str)
|
||||
|
||||
if enable_collect_memory_info:
|
||||
mem_info_str = f"cpu_rss_mb: {dump_result['cpu_rss_mb']}\n" \
|
||||
f"gpu_rss_mb: {dump_result['gpu_rss_mb']}\n" \
|
||||
f"gpu_util: {dump_result['gpu_util']}\n"
|
||||
f.writelines(mem_info_str)
|
||||
print(mem_info_str)
|
||||
except:
|
||||
f.writelines("!!!!!Infer Failed\n")
|
||||
|
||||
f.close()
|
Reference in New Issue
Block a user