mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
Revert "[Benchmark]Benchmark cpp for YOLOv5" (#1250)
Revert "[Benchmark]Benchmark cpp for YOLOv5 (#1224)"
This reverts commit c487359e33
.
This commit is contained in:
@@ -1,380 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
import numpy as np
|
||||
import time
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model_dir", required=True, help="Model dir of PPOCR.")
|
||||
parser.add_argument(
|
||||
"--det_model", required=True, help="Path of Detection model of PPOCR.")
|
||||
parser.add_argument(
|
||||
"--cls_model",
|
||||
required=True,
|
||||
help="Path of Classification model of PPOCR.")
|
||||
parser.add_argument(
|
||||
"--rec_model",
|
||||
required=True,
|
||||
help="Path of Recognization model of PPOCR.")
|
||||
parser.add_argument(
|
||||
"--rec_label_file",
|
||||
required=True,
|
||||
help="Path of Recognization model of PPOCR.")
|
||||
parser.add_argument(
|
||||
"--image", type=str, required=False, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
"--cpu_num_thread",
|
||||
type=int,
|
||||
default=8,
|
||||
help="default number of cpu thread.")
|
||||
parser.add_argument(
|
||||
"--device_id", type=int, default=0, help="device(gpu) id")
|
||||
parser.add_argument(
|
||||
"--iter_num",
|
||||
required=True,
|
||||
type=int,
|
||||
default=300,
|
||||
help="number of iterations for computing performace.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
default="cpu",
|
||||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||
parser.add_argument(
|
||||
"--backend",
|
||||
type=str,
|
||||
default="default",
|
||||
help="inference backend, default, ort, ov, trt, paddle, paddle_trt.")
|
||||
parser.add_argument(
|
||||
"--enable_trt_fp16",
|
||||
type=ast.literal_eval,
|
||||
default=False,
|
||||
help="whether enable fp16 in trt backend")
|
||||
parser.add_argument(
|
||||
"--enable_collect_memory_info",
|
||||
type=ast.literal_eval,
|
||||
default=False,
|
||||
help="whether enable collect memory info")
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
device = args.device
|
||||
backend = args.backend
|
||||
enable_trt_fp16 = args.enable_trt_fp16
|
||||
option.set_cpu_thread_num(args.cpu_num_thread)
|
||||
if device == "gpu":
|
||||
option.use_gpu()
|
||||
if backend == "ort":
|
||||
option.use_ort_backend()
|
||||
elif backend == "paddle":
|
||||
option.use_paddle_backend()
|
||||
elif backend in ["trt", "paddle_trt"]:
|
||||
option.use_trt_backend()
|
||||
if backend == "paddle_trt":
|
||||
option.enable_paddle_trt_collect_shape()
|
||||
option.enable_paddle_to_trt()
|
||||
if enable_trt_fp16:
|
||||
option.enable_trt_fp16()
|
||||
elif backend == "default":
|
||||
return option
|
||||
else:
|
||||
raise Exception(
|
||||
"While inference with GPU, only support default/ort/paddle/trt/paddle_trt now, {} is not supported.".
|
||||
format(backend))
|
||||
elif device == "cpu":
|
||||
if backend == "ort":
|
||||
option.use_ort_backend()
|
||||
elif backend == "ov":
|
||||
option.use_openvino_backend()
|
||||
elif backend == "paddle":
|
||||
option.use_paddle_backend()
|
||||
elif backend == "default":
|
||||
return option
|
||||
else:
|
||||
raise Exception(
|
||||
"While inference with CPU, only support default/ort/ov/paddle now, {} is not supported.".
|
||||
format(backend))
|
||||
else:
|
||||
raise Exception(
|
||||
"Only support device CPU/GPU now, {} is not supported.".format(
|
||||
device))
|
||||
|
||||
return option
|
||||
|
||||
|
||||
class StatBase(object):
|
||||
"""StatBase"""
|
||||
nvidia_smi_path = "nvidia-smi"
|
||||
gpu_keys = ('index', 'uuid', 'name', 'timestamp', 'memory.total',
|
||||
'memory.free', 'memory.used', 'utilization.gpu',
|
||||
'utilization.memory')
|
||||
nu_opt = ',nounits'
|
||||
cpu_keys = ('cpu.util', 'memory.util', 'memory.used')
|
||||
|
||||
|
||||
class Monitor(StatBase):
|
||||
"""Monitor"""
|
||||
|
||||
def __init__(self, use_gpu=False, gpu_id=0, interval=0.1):
|
||||
self.result = {}
|
||||
self.gpu_id = gpu_id
|
||||
self.use_gpu = use_gpu
|
||||
self.interval = interval
|
||||
self.cpu_stat_q = multiprocessing.Queue()
|
||||
|
||||
def start(self):
|
||||
cmd = '%s --id=%s --query-gpu=%s --format=csv,noheader%s -lms 50' % (
|
||||
StatBase.nvidia_smi_path, self.gpu_id, ','.join(StatBase.gpu_keys),
|
||||
StatBase.nu_opt)
|
||||
if self.use_gpu:
|
||||
self.gpu_stat_worker = subprocess.Popen(
|
||||
cmd,
|
||||
stderr=subprocess.STDOUT,
|
||||
stdout=subprocess.PIPE,
|
||||
shell=True,
|
||||
close_fds=True,
|
||||
preexec_fn=os.setsid)
|
||||
# cpu stat
|
||||
pid = os.getpid()
|
||||
self.cpu_stat_worker = multiprocessing.Process(
|
||||
target=self.cpu_stat_func,
|
||||
args=(self.cpu_stat_q, pid, self.interval))
|
||||
self.cpu_stat_worker.start()
|
||||
|
||||
def stop(self):
|
||||
try:
|
||||
if self.use_gpu:
|
||||
os.killpg(self.gpu_stat_worker.pid, signal.SIGUSR1)
|
||||
# os.killpg(p.pid, signal.SIGTERM)
|
||||
self.cpu_stat_worker.terminate()
|
||||
self.cpu_stat_worker.join(timeout=0.01)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
return
|
||||
|
||||
# gpu
|
||||
if self.use_gpu:
|
||||
lines = self.gpu_stat_worker.stdout.readlines()
|
||||
lines = [
|
||||
line.strip().decode("utf-8") for line in lines
|
||||
if line.strip() != ''
|
||||
]
|
||||
gpu_info_list = [{
|
||||
k: v
|
||||
for k, v in zip(StatBase.gpu_keys, line.split(', '))
|
||||
} for line in lines]
|
||||
if len(gpu_info_list) == 0:
|
||||
return
|
||||
result = gpu_info_list[0]
|
||||
for item in gpu_info_list:
|
||||
for k in item.keys():
|
||||
if k not in ["name", "uuid", "timestamp"]:
|
||||
result[k] = max(int(result[k]), int(item[k]))
|
||||
else:
|
||||
result[k] = max(result[k], item[k])
|
||||
self.result['gpu'] = result
|
||||
|
||||
# cpu
|
||||
cpu_result = {}
|
||||
if self.cpu_stat_q.qsize() > 0:
|
||||
cpu_result = {
|
||||
k: v
|
||||
for k, v in zip(StatBase.cpu_keys, self.cpu_stat_q.get())
|
||||
}
|
||||
while not self.cpu_stat_q.empty():
|
||||
item = {
|
||||
k: v
|
||||
for k, v in zip(StatBase.cpu_keys, self.cpu_stat_q.get())
|
||||
}
|
||||
for k in StatBase.cpu_keys:
|
||||
cpu_result[k] = max(cpu_result[k], item[k])
|
||||
cpu_result['name'] = cpuinfo.get_cpu_info()['brand_raw']
|
||||
self.result['cpu'] = cpu_result
|
||||
|
||||
def output(self):
|
||||
return self.result
|
||||
|
||||
def cpu_stat_func(self, q, pid, interval=0.0):
|
||||
"""cpu stat function"""
|
||||
stat_info = psutil.Process(pid)
|
||||
while True:
|
||||
# pid = os.getpid()
|
||||
cpu_util, mem_util, mem_use = stat_info.cpu_percent(
|
||||
), stat_info.memory_percent(), round(stat_info.memory_info().rss /
|
||||
1024.0 / 1024.0, 4)
|
||||
q.put([cpu_util, mem_util, mem_use])
|
||||
time.sleep(interval)
|
||||
return
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
args = parse_arguments()
|
||||
option = build_option(args)
|
||||
# Detection Model
|
||||
det_model_file = os.path.join(args.model_dir, args.det_model,
|
||||
"inference.pdmodel")
|
||||
det_params_file = os.path.join(args.model_dir, args.det_model,
|
||||
"inference.pdiparams")
|
||||
# Classification Model
|
||||
cls_model_file = os.path.join(args.model_dir, args.cls_model,
|
||||
"inference.pdmodel")
|
||||
cls_params_file = os.path.join(args.model_dir, args.cls_model,
|
||||
"inference.pdiparams")
|
||||
# Recognition Model
|
||||
rec_model_file = os.path.join(args.model_dir, args.rec_model,
|
||||
"inference.pdmodel")
|
||||
rec_params_file = os.path.join(args.model_dir, args.rec_model,
|
||||
"inference.pdiparams")
|
||||
rec_label_file = os.path.join(args.model_dir, args.rec_label_file)
|
||||
|
||||
gpu_id = args.device_id
|
||||
enable_collect_memory_info = args.enable_collect_memory_info
|
||||
dump_result = dict()
|
||||
end2end_statis = list()
|
||||
cpu_mem = list()
|
||||
gpu_mem = list()
|
||||
gpu_util = list()
|
||||
if args.device == "cpu":
|
||||
file_path = args.model_dir + "_model_" + args.backend + "_" + \
|
||||
args.device + "_" + str(args.cpu_num_thread) + ".txt"
|
||||
else:
|
||||
if args.enable_trt_fp16:
|
||||
file_path = args.model_dir + "_model_" + args.backend + "_fp16_" + args.device + ".txt"
|
||||
else:
|
||||
file_path = args.model_dir + "_model_" + args.backend + "_" + args.device + ".txt"
|
||||
f = open(file_path, "w")
|
||||
f.writelines("===={}====: \n".format(os.path.split(file_path)[-1][:-4]))
|
||||
|
||||
try:
|
||||
if "OCRv2" in args.model_dir:
|
||||
det_option = option
|
||||
if args.backend in ["trt", "paddle_trt"]:
|
||||
det_option.set_trt_input_shape(
|
||||
"x", [1, 3, 64, 64], [1, 3, 640, 640], [1, 3, 960, 960])
|
||||
det_model = fd.vision.ocr.DBDetector(
|
||||
det_model_file, det_params_file, runtime_option=det_option)
|
||||
cls_option = option
|
||||
if args.backend in ["trt", "paddle_trt"]:
|
||||
cls_option.set_trt_input_shape(
|
||||
"x", [1, 3, 48, 10], [10, 3, 48, 320], [64, 3, 48, 1024])
|
||||
cls_model = fd.vision.ocr.Classifier(
|
||||
cls_model_file, cls_params_file, runtime_option=cls_option)
|
||||
rec_option = option
|
||||
if args.backend in ["trt", "paddle_trt"]:
|
||||
rec_option.set_trt_input_shape(
|
||||
"x", [1, 3, 32, 10], [10, 3, 32, 320], [32, 3, 32, 2304])
|
||||
rec_model = fd.vision.ocr.Recognizer(
|
||||
rec_model_file,
|
||||
rec_params_file,
|
||||
rec_label_file,
|
||||
runtime_option=rec_option)
|
||||
model = fd.vision.ocr.PPOCRv2(
|
||||
det_model=det_model, cls_model=cls_model, rec_model=rec_model)
|
||||
elif "OCRv3" in args.model_dir:
|
||||
det_option = option
|
||||
if args.backend in ["trt", "paddle_trt"]:
|
||||
det_option.set_trt_input_shape(
|
||||
"x", [1, 3, 64, 64], [1, 3, 640, 640], [1, 3, 960, 960])
|
||||
det_model = fd.vision.ocr.DBDetector(
|
||||
det_model_file, det_params_file, runtime_option=det_option)
|
||||
cls_option = option
|
||||
if args.backend in ["trt", "paddle_trt"]:
|
||||
cls_option.set_trt_input_shape(
|
||||
"x", [1, 3, 48, 10], [10, 3, 48, 320], [64, 3, 48, 1024])
|
||||
cls_model = fd.vision.ocr.Classifier(
|
||||
cls_model_file, cls_params_file, runtime_option=cls_option)
|
||||
rec_option = option
|
||||
if args.backend in ["trt", "paddle_trt"]:
|
||||
rec_option.set_trt_input_shape(
|
||||
"x", [1, 3, 48, 10], [10, 3, 48, 320], [64, 3, 48, 2304])
|
||||
rec_model = fd.vision.ocr.Recognizer(
|
||||
rec_model_file,
|
||||
rec_params_file,
|
||||
rec_label_file,
|
||||
runtime_option=rec_option)
|
||||
model = fd.vision.ocr.PPOCRv3(
|
||||
det_model=det_model, cls_model=cls_model, rec_model=rec_model)
|
||||
else:
|
||||
raise Exception("model {} not support now in ppocr series".format(
|
||||
args.model_dir))
|
||||
if enable_collect_memory_info:
|
||||
import multiprocessing
|
||||
import subprocess
|
||||
import psutil
|
||||
import signal
|
||||
import cpuinfo
|
||||
enable_gpu = args.device == "gpu"
|
||||
monitor = Monitor(enable_gpu, gpu_id)
|
||||
monitor.start()
|
||||
|
||||
det_model.enable_record_time_of_runtime()
|
||||
cls_model.enable_record_time_of_runtime()
|
||||
rec_model.enable_record_time_of_runtime()
|
||||
im_ori = cv2.imread(args.image)
|
||||
for i in range(args.iter_num):
|
||||
im = im_ori
|
||||
start = time.time()
|
||||
result = model.predict(im)
|
||||
end2end_statis.append(time.time() - start)
|
||||
|
||||
runtime_statis_det = det_model.print_statis_info_of_runtime()
|
||||
runtime_statis_cls = cls_model.print_statis_info_of_runtime()
|
||||
runtime_statis_rec = rec_model.print_statis_info_of_runtime()
|
||||
|
||||
warmup_iter = args.iter_num // 5
|
||||
end2end_statis_repeat = end2end_statis[warmup_iter:]
|
||||
if enable_collect_memory_info:
|
||||
monitor.stop()
|
||||
mem_info = monitor.output()
|
||||
dump_result["cpu_rss_mb"] = mem_info['cpu'][
|
||||
'memory.used'] if 'cpu' in mem_info else 0
|
||||
dump_result["gpu_rss_mb"] = mem_info['gpu'][
|
||||
'memory.used'] if 'gpu' in mem_info else 0
|
||||
dump_result["gpu_util"] = mem_info['gpu'][
|
||||
'utilization.gpu'] if 'gpu' in mem_info else 0
|
||||
|
||||
dump_result["runtime"] = (
|
||||
runtime_statis_det["avg_time"] + runtime_statis_cls["avg_time"] +
|
||||
runtime_statis_rec["avg_time"]) * 1000
|
||||
dump_result["end2end"] = np.mean(end2end_statis_repeat) * 1000
|
||||
|
||||
f.writelines("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
|
||||
f.writelines("End2End(ms): {} \n".format(str(dump_result["end2end"])))
|
||||
print("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
|
||||
print("End2End(ms): {} \n".format(str(dump_result["end2end"])))
|
||||
if enable_collect_memory_info:
|
||||
f.writelines("cpu_rss_mb: {} \n".format(
|
||||
str(dump_result["cpu_rss_mb"])))
|
||||
f.writelines("gpu_rss_mb: {} \n".format(
|
||||
str(dump_result["gpu_rss_mb"])))
|
||||
f.writelines("gpu_util: {} \n".format(
|
||||
str(dump_result["gpu_util"])))
|
||||
print("cpu_rss_mb: {} \n".format(str(dump_result["cpu_rss_mb"])))
|
||||
print("gpu_rss_mb: {} \n".format(str(dump_result["gpu_rss_mb"])))
|
||||
print("gpu_util: {} \n".format(str(dump_result["gpu_util"])))
|
||||
except:
|
||||
f.writelines("!!!!!Infer Failed\n")
|
||||
|
||||
f.close()
|
Reference in New Issue
Block a user