mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
[Feature] support tensor-parallel-size>num_key_value_heads for qwen3 (#2799)
This commit is contained in:
@@ -443,6 +443,13 @@ class QKVParallelLinear(ColumnParallelLinear):
|
|||||||
q_tensor = get_tensor(state_dict.pop(q_weight_key))
|
q_tensor = get_tensor(state_dict.pop(q_weight_key))
|
||||||
k_tensor = get_tensor(state_dict.pop(k_weight_key))
|
k_tensor = get_tensor(state_dict.pop(k_weight_key))
|
||||||
v_tensor = get_tensor(state_dict.pop(v_weight_key))
|
v_tensor = get_tensor(state_dict.pop(v_weight_key))
|
||||||
|
|
||||||
|
if self.kv_num_heads < self.nranks:
|
||||||
|
sharedkv_index = (self.fd_config.parallel_config.tensor_parallel_rank * self.kv_num_heads) // self.nranks
|
||||||
|
sharedkv_start = sharedkv_index * self.head_dim
|
||||||
|
sharedkv_end = sharedkv_start + self.head_dim
|
||||||
|
k_tensor = k_tensor[ : , sharedkv_start : sharedkv_end]
|
||||||
|
v_tensor = v_tensor[ : , sharedkv_start : sharedkv_end]
|
||||||
weight_tensor = paddle.concat([q_tensor, k_tensor, v_tensor],
|
weight_tensor = paddle.concat([q_tensor, k_tensor, v_tensor],
|
||||||
axis=-1).transpose([1, 0])
|
axis=-1).transpose([1, 0])
|
||||||
weight_tensor = weight_tensor.reshape([
|
weight_tensor = weight_tensor.reshape([
|
||||||
|
@@ -54,40 +54,42 @@ class Qwen3Attention(nn.Layer):
|
|||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
self.fd_config = fd_config
|
self.fd_config = fd_config
|
||||||
|
|
||||||
self.head_dim = fd_config.model_config.head_dim
|
self.head_dim = fd_config.model_config.head_dim
|
||||||
nranks = fd_config.parallel_config.tensor_parallel_degree
|
|
||||||
self.q_size = fd_config.model_config.num_attention_heads * self.head_dim // nranks
|
|
||||||
self.kv_size = fd_config.model_config.num_key_value_heads * self.head_dim // nranks
|
|
||||||
|
|
||||||
self.qkv_proj = QKVParallelLinear(fd_config=fd_config,
|
self.qkv_proj = QKVParallelLinear(fd_config,
|
||||||
prefix=f"{prefix}.qkv_proj",
|
prefix=f"{prefix}.qkv_proj",
|
||||||
with_bias=False)
|
with_bias=False)
|
||||||
|
nranks = fd_config.parallel_config.tensor_parallel_degree
|
||||||
|
|
||||||
self.o_proj = RowParallelLinear(
|
self.o_proj = RowParallelLinear(
|
||||||
fd_config=fd_config,
|
fd_config,
|
||||||
prefix=f"{prefix}.o_proj",
|
prefix=f"{prefix}.o_proj",
|
||||||
input_size=fd_config.model_config.head_dim *
|
input_size=fd_config.model_config.head_dim *
|
||||||
fd_config.model_config.num_attention_heads,
|
fd_config.model_config.num_attention_heads,
|
||||||
output_size=fd_config.model_config.hidden_size,
|
output_size=fd_config.model_config.hidden_size,
|
||||||
)
|
)
|
||||||
|
|
||||||
self.attn = Attention(fd_config=fd_config,
|
self.attn = Attention(fd_config,
|
||||||
layer_id=layer_id,
|
layer_id=layer_id,
|
||||||
prefix=prefix,
|
prefix=prefix,
|
||||||
use_neox_rotary_style=True)
|
use_neox_rotary_style=True)
|
||||||
|
|
||||||
self.q_norm = RMSNorm(fd_config=fd_config,
|
self.q_norm = RMSNorm(fd_config,
|
||||||
hidden_size=fd_config.model_config.head_dim,
|
hidden_size=self.head_dim,
|
||||||
eps=fd_config.model_config.rms_norm_eps,
|
eps=fd_config.model_config.rms_norm_eps,
|
||||||
prefix=f"{prefix}.q_norm",
|
prefix=f"{prefix}.q_norm",
|
||||||
begin_norm_axis=2)
|
begin_norm_axis=2)
|
||||||
self.k_norm = RMSNorm(fd_config=fd_config,
|
self.k_norm = RMSNorm(fd_config,
|
||||||
hidden_size=fd_config.model_config.head_dim,
|
hidden_size=self.head_dim,
|
||||||
eps=fd_config.model_config.rms_norm_eps,
|
eps=fd_config.model_config.rms_norm_eps,
|
||||||
prefix=f"{prefix}.k_norm",
|
prefix=f"{prefix}.k_norm",
|
||||||
begin_norm_axis=2)
|
begin_norm_axis=2)
|
||||||
|
|
||||||
|
nranks = fd_config.parallel_config.tensor_parallel_degree
|
||||||
|
num_kv_heads_replicas = max(1, nranks // fd_config.model_config.num_key_value_heads)
|
||||||
|
self.q_size = fd_config.model_config.num_attention_heads * self.head_dim // nranks
|
||||||
|
self.kv_size = fd_config.model_config.num_key_value_heads * self.head_dim * num_kv_heads_replicas // nranks
|
||||||
|
|
||||||
def load_state_dict(self, state_dict):
|
def load_state_dict(self, state_dict):
|
||||||
"""
|
"""
|
||||||
"""
|
"""
|
||||||
@@ -104,7 +106,6 @@ class Qwen3Attention(nn.Layer):
|
|||||||
"""
|
"""
|
||||||
"""
|
"""
|
||||||
qkv_out = self.qkv_proj(hidden_states)
|
qkv_out = self.qkv_proj(hidden_states)
|
||||||
|
|
||||||
# origin_qkv_out = qkv_out
|
# origin_qkv_out = qkv_out
|
||||||
q, k, v = qkv_out.split([self.q_size, self.kv_size, self.kv_size],
|
q, k, v = qkv_out.split([self.q_size, self.kv_size, self.kv_size],
|
||||||
axis=-1)
|
axis=-1)
|
||||||
|
@@ -35,6 +35,7 @@ from fastdeploy.model_executor.layers.lm_head import ParallelLMHead
|
|||||||
from fastdeploy.model_executor.layers.moe.moe import FusedMoE
|
from fastdeploy.model_executor.layers.moe.moe import FusedMoE
|
||||||
from fastdeploy.model_executor.layers.normalization import RMSNorm
|
from fastdeploy.model_executor.layers.normalization import RMSNorm
|
||||||
from fastdeploy.model_executor.models.model_base import ModelForCasualLM
|
from fastdeploy.model_executor.models.model_base import ModelForCasualLM
|
||||||
|
from fastdeploy.model_executor.models.qwen3 import Qwen3Attention
|
||||||
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
||||||
|
|
||||||
|
|
||||||
@@ -88,91 +89,6 @@ class Qwen3MLP(nn.Layer):
|
|||||||
return down_out
|
return down_out
|
||||||
|
|
||||||
|
|
||||||
class Qwen3Attention(nn.Layer):
|
|
||||||
"""
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self,
|
|
||||||
fd_config: FDConfig,
|
|
||||||
layer_id: int,
|
|
||||||
prefix: str = "") -> None:
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
self.fd_config = fd_config
|
|
||||||
self.head_dim = fd_config.model_config.head_dim
|
|
||||||
|
|
||||||
self.qkv_proj = QKVParallelLinear(fd_config,
|
|
||||||
prefix=f"{prefix}.qkv_proj",
|
|
||||||
with_bias=False)
|
|
||||||
nranks = fd_config.parallel_config.tensor_parallel_degree
|
|
||||||
|
|
||||||
self.o_proj = RowParallelLinear(
|
|
||||||
fd_config,
|
|
||||||
prefix=f"{prefix}.o_proj",
|
|
||||||
input_size=fd_config.model_config.head_dim *
|
|
||||||
fd_config.model_config.num_attention_heads,
|
|
||||||
output_size=fd_config.model_config.hidden_size,
|
|
||||||
)
|
|
||||||
|
|
||||||
self.attn = Attention(fd_config,
|
|
||||||
layer_id=layer_id,
|
|
||||||
prefix=prefix,
|
|
||||||
use_neox_rotary_style=True)
|
|
||||||
|
|
||||||
self.q_norm = RMSNorm(fd_config,
|
|
||||||
hidden_size=self.head_dim,
|
|
||||||
eps=fd_config.model_config.rms_norm_eps,
|
|
||||||
prefix=f"{prefix}.q_norm",
|
|
||||||
begin_norm_axis=2)
|
|
||||||
self.k_norm = RMSNorm(fd_config,
|
|
||||||
hidden_size=self.head_dim,
|
|
||||||
eps=fd_config.model_config.rms_norm_eps,
|
|
||||||
prefix=f"{prefix}.k_norm",
|
|
||||||
begin_norm_axis=2)
|
|
||||||
|
|
||||||
self.q_size = fd_config.model_config.num_attention_heads * self.head_dim // nranks
|
|
||||||
self.kv_size = fd_config.model_config.num_key_value_heads * self.head_dim // nranks
|
|
||||||
|
|
||||||
def load_state_dict(self, state_dict):
|
|
||||||
"""
|
|
||||||
"""
|
|
||||||
self.qkv_proj.load_state_dict(state_dict)
|
|
||||||
self.o_proj.load_state_dict(state_dict)
|
|
||||||
self.q_norm.load_state_dict(state_dict)
|
|
||||||
self.k_norm.load_state_dict(state_dict)
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
forward_meta: ForwardMeta,
|
|
||||||
hidden_states: paddle.Tensor,
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
"""
|
|
||||||
qkv_out = self.qkv_proj(hidden_states)
|
|
||||||
# origin_qkv_out = qkv_out
|
|
||||||
q, k, v = qkv_out.split([self.q_size, self.kv_size, self.kv_size],
|
|
||||||
axis=-1)
|
|
||||||
|
|
||||||
q_by_head = q.reshape(
|
|
||||||
[*q.shape[:-1], q.shape[-1] // self.head_dim, self.head_dim])
|
|
||||||
q_by_head = self.q_norm(q_by_head)
|
|
||||||
q = q_by_head.reshape(q.shape)
|
|
||||||
|
|
||||||
k_by_head = k.reshape(
|
|
||||||
[*k.shape[:-1], k.shape[-1] // self.head_dim, self.head_dim])
|
|
||||||
k_by_head = self.k_norm(k_by_head)
|
|
||||||
k = k_by_head.reshape(k.shape)
|
|
||||||
|
|
||||||
qkv_out = paddle.concat([q, k, v], axis=-1)
|
|
||||||
|
|
||||||
atten_out = self.attn(
|
|
||||||
qkv=qkv_out,
|
|
||||||
forward_meta=forward_meta,
|
|
||||||
)
|
|
||||||
output = self.o_proj(atten_out)
|
|
||||||
return output
|
|
||||||
|
|
||||||
|
|
||||||
class Qwen3DecoderLayer(nn.Layer):
|
class Qwen3DecoderLayer(nn.Layer):
|
||||||
"""
|
"""
|
||||||
"""
|
"""
|
||||||
|
@@ -711,9 +711,9 @@ class GPUModelRunner(ModelRunnerBase):
|
|||||||
assert len(self.attn_backends) == 0
|
assert len(self.attn_backends) == 0
|
||||||
|
|
||||||
num_heads = self.model_config.num_attention_heads // self.parallel_config.tensor_parallel_degree
|
num_heads = self.model_config.num_attention_heads // self.parallel_config.tensor_parallel_degree
|
||||||
self.model_config.kv_num_heads = int(
|
self.model_config.kv_num_heads = max(1, int(
|
||||||
self.model_config.num_key_value_heads
|
self.model_config.num_key_value_heads
|
||||||
) // self.parallel_config.tensor_parallel_degree
|
) // self.parallel_config.tensor_parallel_degree)
|
||||||
head_dim = self.model_config.head_dim
|
head_dim = self.model_config.head_dim
|
||||||
|
|
||||||
# Get the attention backend
|
# Get the attention backend
|
||||||
|
Reference in New Issue
Block a user