mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
add paddleclas draft doct
This commit is contained in:
@@ -33,7 +33,7 @@
|
||||
#include "fastdeploy/vision/faceid/contrib/partial_fc.h"
|
||||
#include "fastdeploy/vision/faceid/contrib/vpl.h"
|
||||
#include "fastdeploy/vision/matting/contrib/modnet.h"
|
||||
#include "fastdeploy/vision/ppcls/model.h"
|
||||
#include "fastdeploy/vision/classification/ppcls/model.h"
|
||||
#include "fastdeploy/vision/detection/ppdet/model.h"
|
||||
#include "fastdeploy/vision/ppseg/model.h"
|
||||
#endif
|
||||
|
@@ -12,15 +12,15 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision/ppcls/model.h"
|
||||
#include "fastdeploy/vision/classification/ppcls/model.h"
|
||||
#include "fastdeploy/vision/utils/utils.h"
|
||||
#include "yaml-cpp/yaml.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
namespace vision {
|
||||
namespace ppcls {
|
||||
namespace classification {
|
||||
|
||||
Model::Model(const std::string& model_file, const std::string& params_file,
|
||||
PaddleClasModel::PaddleClasModel(const std::string& model_file, const std::string& params_file,
|
||||
const std::string& config_file, const RuntimeOption& custom_option,
|
||||
const Frontend& model_format) {
|
||||
config_file_ = config_file;
|
||||
@@ -33,7 +33,7 @@ Model::Model(const std::string& model_file, const std::string& params_file,
|
||||
initialized = Initialize();
|
||||
}
|
||||
|
||||
bool Model::Initialize() {
|
||||
bool PaddleClasModel::Initialize() {
|
||||
if (!BuildPreprocessPipelineFromConfig()) {
|
||||
FDERROR << "Failed to build preprocess pipeline from configuration file."
|
||||
<< std::endl;
|
||||
@@ -46,7 +46,7 @@ bool Model::Initialize() {
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Model::BuildPreprocessPipelineFromConfig() {
|
||||
bool PaddleClasModel::BuildPreprocessPipelineFromConfig() {
|
||||
processors_.clear();
|
||||
YAML::Node cfg;
|
||||
try {
|
||||
@@ -91,7 +91,7 @@ bool Model::BuildPreprocessPipelineFromConfig() {
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Model::Preprocess(Mat* mat, FDTensor* output) {
|
||||
bool PaddleClasModel::Preprocess(Mat* mat, FDTensor* output) {
|
||||
for (size_t i = 0; i < processors_.size(); ++i) {
|
||||
if (!(*(processors_[i].get()))(mat)) {
|
||||
FDERROR << "Failed to process image data in " << processors_[i]->Name()
|
||||
@@ -109,7 +109,7 @@ bool Model::Preprocess(Mat* mat, FDTensor* output) {
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Model::Postprocess(const FDTensor& infer_result, ClassifyResult* result,
|
||||
bool PaddleClasModel::Postprocess(const FDTensor& infer_result, ClassifyResult* result,
|
||||
int topk) {
|
||||
int num_classes = infer_result.shape[1];
|
||||
const float* infer_result_buffer =
|
||||
@@ -124,7 +124,7 @@ bool Model::Postprocess(const FDTensor& infer_result, ClassifyResult* result,
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Model::Predict(cv::Mat* im, ClassifyResult* result, int topk) {
|
||||
bool PaddleClasModel::Predict(cv::Mat* im, ClassifyResult* result, int topk) {
|
||||
Mat mat(*im);
|
||||
std::vector<FDTensor> processed_data(1);
|
||||
if (!Preprocess(&mat, &(processed_data[0]))) {
|
||||
@@ -148,6 +148,6 @@ bool Model::Predict(cv::Mat* im, ClassifyResult* result, int topk) {
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace ppcls
|
||||
} // namespace classification
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
@@ -19,21 +19,21 @@
|
||||
|
||||
namespace fastdeploy {
|
||||
namespace vision {
|
||||
namespace ppcls {
|
||||
namespace classification {
|
||||
|
||||
class FASTDEPLOY_DECL Model : public FastDeployModel {
|
||||
class FASTDEPLOY_DECL PaddleClasModel : public FastDeployModel {
|
||||
public:
|
||||
Model(const std::string& model_file, const std::string& params_file,
|
||||
PaddleClasModel(const std::string& model_file, const std::string& params_file,
|
||||
const std::string& config_file,
|
||||
const RuntimeOption& custom_option = RuntimeOption(),
|
||||
const Frontend& model_format = Frontend::PADDLE);
|
||||
|
||||
std::string ModelName() const { return "ppclas-classify"; }
|
||||
virtual std::string ModelName() const { return "PaddleClas/Model"; }
|
||||
|
||||
// TODO(jiangjiajun) Batch is on the way
|
||||
virtual bool Predict(cv::Mat* im, ClassifyResult* result, int topk = 1);
|
||||
|
||||
private:
|
||||
protected:
|
||||
bool Initialize();
|
||||
|
||||
bool BuildPreprocessPipelineFromConfig();
|
||||
@@ -46,6 +46,20 @@ class FASTDEPLOY_DECL Model : public FastDeployModel {
|
||||
std::vector<std::shared_ptr<Processor>> processors_;
|
||||
std::string config_file_;
|
||||
};
|
||||
} // namespace ppcls
|
||||
|
||||
typedef PaddleClasModel PPLCNet;
|
||||
typedef PaddleClasModel PPLCNetv2;
|
||||
typedef PaddleClasModel EfficientNet;
|
||||
typedef PaddleClasModel GhostNet;
|
||||
typedef PaddleClasModel MobileNetv1;
|
||||
typedef PaddleClasModel MobileNetv2;
|
||||
typedef PaddleClasModel MobileNetv3;
|
||||
typedef PaddleClasModel ShuffleNetv2;
|
||||
typedef PaddleClasModel SqueezeNet;
|
||||
typedef PaddleClasModel Inceptionv3;
|
||||
typedef PaddleClasModel PPHGNet;
|
||||
typedef PaddleClasModel ResNet50vd;
|
||||
typedef PaddleClasModel SwinTransformer;
|
||||
} // namespace classification
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
@@ -15,12 +15,11 @@
|
||||
|
||||
namespace fastdeploy {
|
||||
void BindPPCls(pybind11::module& m) {
|
||||
auto ppcls_module = m.def_submodule("ppcls", "Module to deploy PaddleClas.");
|
||||
pybind11::class_<vision::ppcls::Model, FastDeployModel>(ppcls_module, "Model")
|
||||
pybind11::class_<vision::classification::PaddleClasModel, FastDeployModel>(m, "PaddleClasModel")
|
||||
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
|
||||
Frontend>())
|
||||
.def("predict",
|
||||
[](vision::ppcls::Model& self, pybind11::array& data, int topk = 1) {
|
||||
[](vision::classification::PaddleClasModel& self, pybind11::array& data, int topk = 1) {
|
||||
auto mat = PyArrayToCvMat(data);
|
||||
vision::ClassifyResult res;
|
||||
self.Predict(&mat, &res, topk);
|
28
examples/vision/classification/paddleclas/README.md
Normal file
28
examples/vision/classification/paddleclas/README.md
Normal file
@@ -0,0 +1,28 @@
|
||||
# PaddleClas 模型部署
|
||||
|
||||
## 模型版本说明
|
||||
|
||||
- [PaddleClas Release/2.4](https://github.com/PaddlePaddle/PaddleClas)
|
||||
|
||||
## 准备PaddleClas部署模型
|
||||
|
||||
PaddleClas模型导出,请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/inference_deployment/export_model.md#2-%E5%88%86%E7%B1%BB%E6%A8%A1%E5%9E%8B%E5%AF%BC%E5%87%BA)
|
||||
|
||||
注意:PaddleClas导出的模型仅包含`inference.pdmodel`和`inference.pdiparams`两个文档,但为了满足部署的需求,同时也需准备其提供的[inference_cls.yaml](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/deploy/configs/inference_cls.yaml)文件,FastDeploy会从yaml文件中获取模型在推理时需要的预处理信息,开发者可直接下载此文件使用。但需根据自己的需求修改yaml文件中的配置参数。
|
||||
|
||||
|
||||
## 下载预训练模型
|
||||
|
||||
为了方便开发者的测试,下面提供了PaddleClas导出的部分模型(含inference_cls.yaml文件),开发者可直接下载使用。
|
||||
|
||||
| 模型 | 大小 |输入Shape | 精度 |
|
||||
|:---------------------------------------------------------------- |:----- |:----- | :----- |
|
||||
| [PPLCNet]() | 141MB | 224x224 |51.4% |
|
||||
| [PPLCNetv2]() | 10MB | 224x224 |51.4% |
|
||||
| [EfficientNet]() | | 224x224 | |
|
||||
|
||||
|
||||
## 详细部署文档
|
||||
|
||||
- [Python部署](python)
|
||||
- [C++部署](cpp)
|
14
examples/vision/classification/paddleclas/cpp/CMakeLists.txt
Normal file
14
examples/vision/classification/paddleclas/cpp/CMakeLists.txt
Normal file
@@ -0,0 +1,14 @@
|
||||
PROJECT(infer_demo C CXX)
|
||||
CMAKE_MINIMUM_REQUIRED (VERSION 3.12)
|
||||
|
||||
# 指定下载解压后的fastdeploy库路径
|
||||
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
|
||||
|
||||
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
|
||||
|
||||
# 添加FastDeploy依赖头文件
|
||||
include_directories(${FASTDEPLOY_INCS})
|
||||
|
||||
add_executable(infer_demo ${PROJECT_SOURCE_DIR}/infer.cc)
|
||||
# 添加FastDeploy库依赖
|
||||
target_link_libraries(infer_demo ${FASTDEPLOY_LIBS})
|
77
examples/vision/classification/paddleclas/cpp/README.md
Normal file
77
examples/vision/classification/paddleclas/cpp/README.md
Normal file
@@ -0,0 +1,77 @@
|
||||
# YOLOv7 C++部署示例
|
||||
|
||||
本目录下提供`infer.cc`快速完成YOLOv7在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
|
||||
|
||||
在部署前,需确认以下两个步骤
|
||||
|
||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/quick_start/requirements.md)
|
||||
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/compile/prebuilt_libraries.md)
|
||||
|
||||
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
||||
|
||||
```
|
||||
mkdir build
|
||||
cd build
|
||||
wget https://xxx.tgz
|
||||
tar xvf fastdeploy-linux-x64-0.2.0.tgz
|
||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.2.0
|
||||
make -j
|
||||
|
||||
#下载官方转换好的yolov7模型文件和测试图片
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov7.onnx
|
||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000087038.jpg
|
||||
|
||||
|
||||
# CPU推理
|
||||
./infer_demo yolov7.onnx 000000087038.jpg 0
|
||||
# GPU推理
|
||||
./infer_demo yolov7.onnx 000000087038.jpg 1
|
||||
# GPU上TensorRT推理
|
||||
./infer_demo yolov7.onnx 000000087038.jpg 2
|
||||
```
|
||||
|
||||
## YOLOv7 C++接口
|
||||
|
||||
### YOLOv7类
|
||||
|
||||
```
|
||||
fastdeploy::vision::detection::YOLOv7(
|
||||
const string& model_file,
|
||||
const string& params_file = "",
|
||||
const RuntimeOption& runtime_option = RuntimeOption(),
|
||||
const Frontend& model_format = Frontend::ONNX)
|
||||
```
|
||||
|
||||
YOLOv7模型加载和初始化,其中model_file为导出的ONNX模型格式。
|
||||
|
||||
**参数**
|
||||
|
||||
> * **model_file**(str): 模型文件路径
|
||||
> * **params_file**(str): 参数文件路径,当模型格式为ONNX时,此参数传入空字符串即可
|
||||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||||
> * **model_format**(Frontend): 模型格式,默认为ONNX格式
|
||||
|
||||
#### Predict函数
|
||||
|
||||
> ```
|
||||
> YOLOv7::Predict(cv::Mat* im, DetectionResult* result,
|
||||
> float conf_threshold = 0.25,
|
||||
> float nms_iou_threshold = 0.5)
|
||||
> ```
|
||||
>
|
||||
> 模型预测接口,输入图像直接输出检测结果。
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
> > * **im**: 输入图像,注意需为HWC,BGR格式
|
||||
> > * **result**: 检测结果,包括检测框,各个框的置信度, DetectionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||||
> > * **conf_threshold**: 检测框置信度过滤阈值
|
||||
> > * **nms_iou_threshold**: NMS处理过程中iou阈值
|
||||
|
||||
### 类成员变量
|
||||
|
||||
> > * **size**(vector<int>): 通过此参数修改预处理过程中resize的大小,包含两个整型元素,表示[width, height], 默认值为[640, 640]
|
||||
|
||||
- [模型介绍](../../)
|
||||
- [Python部署](../python)
|
||||
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
|
105
examples/vision/classification/paddleclas/cpp/infer.cc
Normal file
105
examples/vision/classification/paddleclas/cpp/infer.cc
Normal file
@@ -0,0 +1,105 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision.h"
|
||||
|
||||
void CpuInfer(const std::string& model_file, const std::string& image_file) {
|
||||
auto model = fastdeploy::vision::detection::YOLOv7(model_file);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
auto im_bak = im.clone();
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(&im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto vis_im = fastdeploy::vision::Visualize::VisDetection(im_bak, res);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void GpuInfer(const std::string& model_file, const std::string& image_file) {
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseGpu();
|
||||
auto model = fastdeploy::vision::detection::YOLOv7(model_file, "", option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
auto im_bak = im.clone();
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(&im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto vis_im = fastdeploy::vision::Visualize::VisDetection(im_bak, res);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void TrtInfer(const std::string& model_file, const std::string& image_file) {
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseGpu();
|
||||
option.UseTrtBackend();
|
||||
option.SetTrtInputShape("images", {1, 3, 640, 640});
|
||||
auto model = fastdeploy::vision::detection::YOLOv7(model_file, "", option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
auto im_bak = im.clone();
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(&im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto vis_im = fastdeploy::vision::Visualize::VisDetection(im_bak, res);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
|
||||
"e.g ./infer_model ./yolov7.onnx ./test.jpeg 0"
|
||||
<< std::endl;
|
||||
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
||||
"with gpu; 2: run with gpu and use tensorrt backend."
|
||||
<< std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (std::atoi(argv[3]) == 0) {
|
||||
CpuInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 1) {
|
||||
GpuInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 2) {
|
||||
TrtInfer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
71
examples/vision/classification/paddleclas/python/README.md
Normal file
71
examples/vision/classification/paddleclas/python/README.md
Normal file
@@ -0,0 +1,71 @@
|
||||
# PaddleClas模型 Python部署示例
|
||||
|
||||
在部署前,需确认以下两个步骤
|
||||
|
||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/quick_start/requirements.md)
|
||||
- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../docs/quick_start/install.md)
|
||||
|
||||
本目录下提供`infer.py`快速完成YOLOv7在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
||||
|
||||
```
|
||||
# 下载yolov7模型文件和测试图片
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov7.onnx
|
||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||||
|
||||
|
||||
#下载部署示例代码
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd examples/vison/detection/yolov7/python/
|
||||
|
||||
# CPU推理
|
||||
python infer.py --model yolov7.onnx --image 000000087038.jpg --device cpu
|
||||
# GPU推理
|
||||
python infer.py --model yolov7.onnx --image 000000087038.jpg --device gpu
|
||||
# GPU上使用TensorRT推理 (注意:TensorRT推理第一次运行,有序列化模型的操作,有一定耗时,需要耐心等待)
|
||||
python infer.py --model yolov7.onnx --image 000000087038.jpg --device gpu --use_trt True
|
||||
```
|
||||
|
||||
运行完成可视化结果如下图所示
|
||||
|
||||
## YOLOv7 Python接口
|
||||
|
||||
```
|
||||
fastdeploy.vision.detection.YOLOv7(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
||||
```
|
||||
|
||||
YOLOv7模型加载和初始化,其中model_file为导出的ONNX模型格式
|
||||
|
||||
**参数**
|
||||
|
||||
> * **model_file**(str): 模型文件路径
|
||||
> * **params_file**(str): 参数文件路径,当模型格式为ONNX格式时,此参数无需设定
|
||||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||||
> * **model_format**(Frontend): 模型格式,默认为ONNX
|
||||
|
||||
### predict函数
|
||||
|
||||
> ```
|
||||
> YOLOv7.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
||||
> ```
|
||||
>
|
||||
> 模型预测结口,输入图像直接输出检测结果。
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
> > * **image_data**(np.ndarray): 输入数据,注意需为HWC,BGR格式
|
||||
> > * **conf_threshold**(float): 检测框置信度过滤阈值
|
||||
> > * **nms_iou_threshold**(float): NMS处理过程中iou阈值
|
||||
|
||||
> **返回**
|
||||
>
|
||||
> > 返回`fastdeploy.vision.DetectionResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||||
|
||||
### 类成员属性
|
||||
|
||||
> > * **size**(list | tuple): 通过此参数修改预处理过程中resize的大小,包含两个整型元素,表示[width, height], 默认值为[640, 640]
|
||||
|
||||
## 其它文档
|
||||
|
||||
- [YOLOv7 模型介绍](..)
|
||||
- [YOLOv7 C++部署](../cpp)
|
||||
- [模型预测结果说明](../../../../../docs/api/vision_results/)
|
47
examples/vision/classification/paddleclas/python/infer.py
Normal file
47
examples/vision/classification/paddleclas/python/infer.py
Normal file
@@ -0,0 +1,47 @@
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model", required=True, help="Path of PaddleClas model.")
|
||||
parser.add_argument(
|
||||
"--image", required=True, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||
parser.add_argument(
|
||||
"--use_trt",
|
||||
type=ast.literal_eval,
|
||||
default=False,
|
||||
help="Wether to use tensorrt.")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu()
|
||||
|
||||
if args.use_trt:
|
||||
option.use_trt_backend()
|
||||
option.set_trt_input_shape("images", [1, 3, 640, 640])
|
||||
return option
|
||||
|
||||
|
||||
args = parse_arguments()
|
||||
|
||||
# 配置runtime,加载模型
|
||||
runtime_option = build_option(args)
|
||||
model = fd.vision.classification.PaddleClasModel(args.model, runtime_option=runtime_option)
|
||||
|
||||
# 预测图片分类结果
|
||||
im = cv2.imread(args.image)
|
||||
result = model.predict(im)
|
||||
print(result)
|
30
fastdeploy/vision/classification/__init__.py
Normal file
30
fastdeploy/vision/classification/__init__.py
Normal file
@@ -0,0 +1,30 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from __future__ import absolute_import
|
||||
|
||||
from .ppcls import PaddleClasModel
|
||||
|
||||
PPLCNet = PaddleClasModel
|
||||
PPLCNetv2 = PaddleClasModel
|
||||
EfficientNet = PaddleClasModel
|
||||
GhostNet = PaddleClasModel
|
||||
MobileNetv1 = PaddleClasModel
|
||||
MobileNetv2 = PaddleClasModel
|
||||
MobileNetv3 = PaddleClasModel
|
||||
ShuffleNetv2 = PaddleClasModel
|
||||
SqueezeNet = PaddleClasModel
|
||||
Inceptionv3 = PaddleClasModel
|
||||
PPHGNet = PaddleClasModel
|
||||
ResNet50vd = PaddleClasModel
|
||||
SwinTransformer = PaddleClasModel
|
@@ -14,21 +14,21 @@
|
||||
|
||||
from __future__ import absolute_import
|
||||
import logging
|
||||
from ... import FastDeployModel, Frontend
|
||||
from ... import c_lib_wrap as C
|
||||
from .... import FastDeployModel, Frontend
|
||||
from .... import c_lib_wrap as C
|
||||
|
||||
|
||||
class Model(FastDeployModel):
|
||||
class PaddleClasModel(FastDeployModel):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file,
|
||||
config_file,
|
||||
backend_option=None,
|
||||
model_format=Frontend.PADDLE):
|
||||
super(Model, self).__init__(backend_option)
|
||||
super(PaddleClasModel, self).__init__(backend_option)
|
||||
|
||||
assert model_format == Frontend.PADDLE, "PaddleClas only support model format of Frontend.Paddle now."
|
||||
self._model = C.vision.ppcls.Model(model_file, params_file,
|
||||
assert model_format == Frontend.PADDLE, "PaddleClasModel only support model format of Frontend.Paddle now."
|
||||
self._model = C.vision.classification.PaddleClasModel(model_file, params_file,
|
||||
config_file, self._runtime_option,
|
||||
model_format)
|
||||
assert self.initialized, "PaddleClas model initialize failed."
|
Reference in New Issue
Block a user