mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
[docs][win] add windows c++ sdk demo to examples (#136)
* [docs] format docs with markdown with language tags * [docs][win] add windows c++ sdk demo * [docs][win] add windows c++ sdk demo to examples * [docs][api] update runtime_option docs
This commit is contained in:
@@ -63,11 +63,11 @@
|
|||||||
- python 3.6\~3.9(Windows 10 3.8\~3.9)
|
- python 3.6\~3.9(Windows 10 3.8\~3.9)
|
||||||
|
|
||||||
#### 安装 CPU Python 版本
|
#### 安装 CPU Python 版本
|
||||||
```
|
```bash
|
||||||
pip install numpy opencv-python fastdeploy-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html
|
pip install numpy opencv-python fastdeploy-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html
|
||||||
```
|
```
|
||||||
#### 安装 GPU Python 版本
|
#### 安装 GPU Python 版本
|
||||||
```
|
```bash
|
||||||
pip install numpy opencv-python fastdeploy-gpu-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html
|
pip install numpy opencv-python fastdeploy-gpu-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html
|
||||||
```
|
```
|
||||||
#### 安装 C++ 版本
|
#### 安装 C++ 版本
|
||||||
|
@@ -15,13 +15,13 @@ FastDeploy产品中的Runtime包含多个推理后端,其各关系如下所示
|
|||||||
| GPU | 支持 | 支持 | 支持 | 支持 |
|
| GPU | 支持 | 支持 | 支持 | 支持 |
|
||||||
|
|
||||||
在各模型的,均通过`RuntimeOption`来配置推理的后端,以及推理时的参数,例如在python中,加载模型后可通过如下代码打印推理配置
|
在各模型的,均通过`RuntimeOption`来配置推理的后端,以及推理时的参数,例如在python中,加载模型后可通过如下代码打印推理配置
|
||||||
```
|
```python
|
||||||
model = fastdeploy.vision.ultralytics.YOLOv5("yolov5s.onnx")
|
model = fastdeploy.vision.detection.YOLOv5("yolov5s.onnx")
|
||||||
print(model.runtime_option)
|
print(model.runtime_option)
|
||||||
```
|
```
|
||||||
可看下如下输出
|
可看下如下输出
|
||||||
|
|
||||||
```
|
```python
|
||||||
RuntimeOption(
|
RuntimeOption(
|
||||||
backend : Backend.ORT # 推理后端ONNXRuntime
|
backend : Backend.ORT # 推理后端ONNXRuntime
|
||||||
cpu_thread_num : 8 # CPU线程数(仅当使用CPU推理时有效)
|
cpu_thread_num : 8 # CPU线程数(仅当使用CPU推理时有效)
|
||||||
@@ -70,7 +70,7 @@ RuntimeOption(
|
|||||||
> * **trt_max_shape**(dict[str : list[int]]): 当模型为动态shape,且实际推理时输入shape也会变化,通过此参数配置输入的最大shape
|
> * **trt_max_shape**(dict[str : list[int]]): 当模型为动态shape,且实际推理时输入shape也会变化,通过此参数配置输入的最大shape
|
||||||
> * **trt_max_batch_size**(int): TensorRT推理时的最大batch数
|
> * **trt_max_batch_size**(int): TensorRT推理时的最大batch数
|
||||||
|
|
||||||
```
|
```python
|
||||||
import fastdeploy as fd
|
import fastdeploy as fd
|
||||||
|
|
||||||
option = fd.RuntimeOption()
|
option = fd.RuntimeOption()
|
||||||
@@ -81,7 +81,8 @@ option.trt_min_shape = {"x": [1, 3, 224, 224]}
|
|||||||
option.trt_opt_shape = {"x": [4, 3, 224, 224]}
|
option.trt_opt_shape = {"x": [4, 3, 224, 224]}
|
||||||
option.trt_max_shape = {"x": [8, 3, 224, 224]}
|
option.trt_max_shape = {"x": [8, 3, 224, 224]}
|
||||||
|
|
||||||
model = fd.vision.ppcls.Model("resnet50/inference.pdmodel",
|
model = fd.vision.classification.PaddleClasModel(
|
||||||
|
"resnet50/inference.pdmodel",
|
||||||
"resnet50/inference.pdiparams",
|
"resnet50/inference.pdiparams",
|
||||||
"resnet50/inference_cls.yaml",
|
"resnet50/inference_cls.yaml",
|
||||||
runtime_option=option)
|
runtime_option=option)
|
||||||
@@ -112,7 +113,7 @@ model = fd.vision.ppcls.Model("resnet50/inference.pdmodel",
|
|||||||
> * **trt_max_shape**(map<string, vector<int>>): 当模型为动态shape,且实际推理时输入shape也会变化,通过此参数配置输入的最大shape
|
> * **trt_max_shape**(map<string, vector<int>>): 当模型为动态shape,且实际推理时输入shape也会变化,通过此参数配置输入的最大shape
|
||||||
> * **trt_max_batch_size**(int): TensorRT推理时的最大batch数
|
> * **trt_max_batch_size**(int): TensorRT推理时的最大batch数
|
||||||
|
|
||||||
```
|
```c++
|
||||||
#include "fastdeploy/vision.h"
|
#include "fastdeploy/vision.h"
|
||||||
|
|
||||||
int main() {
|
int main() {
|
||||||
@@ -121,7 +122,7 @@ int main() {
|
|||||||
option.trt_opt_shape["x"] = {4, 3, 224, 224};
|
option.trt_opt_shape["x"] = {4, 3, 224, 224};
|
||||||
option.trt_max_shape["x"] = {8, 3, 224, 224};
|
option.trt_max_shape["x"] = {8, 3, 224, 224};
|
||||||
|
|
||||||
auto model = fastdeploy::vision::ppcls.Model(
|
auto model = fastdeploy::vision::classification::PaddleClasModel(
|
||||||
"resnet50/inference.pdmodel",
|
"resnet50/inference.pdmodel",
|
||||||
"resnet50/inference.pdiparams",
|
"resnet50/inference.pdiparams",
|
||||||
"resnet50/inference_cls.yaml",
|
"resnet50/inference_cls.yaml",
|
||||||
|
@@ -6,7 +6,7 @@ ClassifyResult代码定义在`csrcs/fastdeploy/vision/common/result.h`中,用
|
|||||||
|
|
||||||
`fastdeploy::vision::ClassifyResult`
|
`fastdeploy::vision::ClassifyResult`
|
||||||
|
|
||||||
```
|
```c++
|
||||||
struct ClassifyResult {
|
struct ClassifyResult {
|
||||||
std::vector<int32_t> label_ids;
|
std::vector<int32_t> label_ids;
|
||||||
std::vector<float> scores;
|
std::vector<float> scores;
|
||||||
|
@@ -6,7 +6,7 @@ DetectionResult代码定义在`csrcs/fastdeploy/vision/common/result.h`中,用
|
|||||||
|
|
||||||
`fastdeploy::vision::DetectionResult`
|
`fastdeploy::vision::DetectionResult`
|
||||||
|
|
||||||
```
|
```c++
|
||||||
struct DetectionResult {
|
struct DetectionResult {
|
||||||
std::vector<std::array<float, 4>> boxes;
|
std::vector<std::array<float, 4>> boxes;
|
||||||
std::vector<float> scores;
|
std::vector<float> scores;
|
||||||
|
@@ -6,7 +6,7 @@ FaceDetectionResult 代码定义在`csrcs/fastdeploy/vision/common/result.h`中
|
|||||||
|
|
||||||
`fastdeploy::vision::FaceDetectionResult`
|
`fastdeploy::vision::FaceDetectionResult`
|
||||||
|
|
||||||
```
|
```c++
|
||||||
struct FaceDetectionResult {
|
struct FaceDetectionResult {
|
||||||
std::vector<std::array<float, 4>> boxes;
|
std::vector<std::array<float, 4>> boxes;
|
||||||
std::vector<std::array<float, 2>> landmarks;
|
std::vector<std::array<float, 2>> landmarks;
|
||||||
@@ -32,4 +32,3 @@ struct FaceDetectionResult {
|
|||||||
- **scores**(list of float): 成员变量,表示单张图片检测出来的所有目标置信度
|
- **scores**(list of float): 成员变量,表示单张图片检测出来的所有目标置信度
|
||||||
- **landmarks**(list of list(float)): 成员变量,表示单张图片检测出来的所有人脸的关键点
|
- **landmarks**(list of list(float)): 成员变量,表示单张图片检测出来的所有人脸的关键点
|
||||||
- **landmarks_per_face**(int): 成员变量,表示每个人脸框中的关键点的数量。
|
- **landmarks_per_face**(int): 成员变量,表示每个人脸框中的关键点的数量。
|
||||||
|
|
||||||
|
@@ -5,7 +5,7 @@ FaceRecognitionResult 代码定义在`csrcs/fastdeploy/vision/common/result.h`
|
|||||||
|
|
||||||
`fastdeploy::vision::FaceRecognitionResult`
|
`fastdeploy::vision::FaceRecognitionResult`
|
||||||
|
|
||||||
```
|
```c++
|
||||||
struct FaceRecognitionResult {
|
struct FaceRecognitionResult {
|
||||||
std::vector<float> embedding;
|
std::vector<float> embedding;
|
||||||
void Clear();
|
void Clear();
|
||||||
|
@@ -6,7 +6,7 @@ MattingResult 代码定义在`csrcs/fastdeploy/vision/common/result.h`中,用
|
|||||||
|
|
||||||
`fastdeploy::vision::MattingResult`
|
`fastdeploy::vision::MattingResult`
|
||||||
|
|
||||||
```
|
```c++
|
||||||
struct MattingResult {
|
struct MattingResult {
|
||||||
std::vector<float> alpha;
|
std::vector<float> alpha;
|
||||||
std::vector<float> foreground;
|
std::vector<float> foreground;
|
||||||
|
@@ -6,7 +6,7 @@ SegmentationResult代码定义在`csrcs/fastdeploy/vision/common/result.h`中,
|
|||||||
|
|
||||||
`fastdeploy::vision::DetectionResult`
|
`fastdeploy::vision::DetectionResult`
|
||||||
|
|
||||||
```
|
```c++
|
||||||
struct DetectionResult {
|
struct DetectionResult {
|
||||||
std::vector<uint8_t> label_map;
|
std::vector<uint8_t> label_map;
|
||||||
std::vector<float> score_map;
|
std::vector<float> score_map;
|
||||||
|
@@ -9,7 +9,7 @@
|
|||||||
- TensorRT >= 8.4 (当ENABLE_TRT_BACKEND=ON)
|
- TensorRT >= 8.4 (当ENABLE_TRT_BACKEND=ON)
|
||||||
|
|
||||||
## 编译C++
|
## 编译C++
|
||||||
```
|
```bash
|
||||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||||
cd FastDeploy
|
cd FastDeploy
|
||||||
git checkout develop
|
git checkout develop
|
||||||
@@ -23,7 +23,7 @@ make install
|
|||||||
编译后的预测库即在当前目录下的`fastdeploy-0.0.3`
|
编译后的预测库即在当前目录下的`fastdeploy-0.0.3`
|
||||||
|
|
||||||
## 编译Python安装包
|
## 编译Python安装包
|
||||||
```
|
```bash
|
||||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||||
cd FastDeploy
|
cd FastDeploy
|
||||||
git checkout develop
|
git checkout develop
|
||||||
|
@@ -3,13 +3,13 @@
|
|||||||
## 环境依赖
|
## 环境依赖
|
||||||
|
|
||||||
- cmake >= 3.12
|
- cmake >= 3.12
|
||||||
- g++ >= 8.2
|
- Visual Studio 16 2019
|
||||||
- cuda >= 11.2 (当WITH_GPU=ON)
|
- cuda >= 11.2 (当WITH_GPU=ON)
|
||||||
- cudnn >= 11.2 (当WITH_GPU=ON)
|
- cudnn >= 11.2 (当WITH_GPU=ON)
|
||||||
- TensorRT >= 8.4 (当ENABLE_TRT_BACKEND=ON)
|
- TensorRT >= 8.4 (当ENABLE_TRT_BACKEND=ON)
|
||||||
|
|
||||||
## 获取代码
|
## 获取代码
|
||||||
```
|
```bat
|
||||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||||
cd FastDeploy
|
cd FastDeploy
|
||||||
git checkout develop
|
git checkout develop
|
||||||
@@ -19,7 +19,7 @@ git checkout develop
|
|||||||
|
|
||||||
Windows菜单打开`x64 Native Tools Command Prompt for VS 2019`命令工具,其中`CMAKE_INSTALL_PREFIX`用于指定编译后生成的SDK路径
|
Windows菜单打开`x64 Native Tools Command Prompt for VS 2019`命令工具,其中`CMAKE_INSTALL_PREFIX`用于指定编译后生成的SDK路径
|
||||||
|
|
||||||
```
|
```bat
|
||||||
mkdir build
|
mkdir build
|
||||||
cd build
|
cd build
|
||||||
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=D:\Paddle\FastDeploy\build\fastdeploy-win-x64-0.2.0 -DENABLE_ORT_BACKEND=ON -DENABLE_VISION=ON ..
|
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=D:\Paddle\FastDeploy\build\fastdeploy-win-x64-0.2.0 -DENABLE_ORT_BACKEND=ON -DENABLE_VISION=ON ..
|
||||||
@@ -31,7 +31,7 @@ msbuild INSTALL.vcxproj /m /p:Configuration=Release /p:Platform=x64
|
|||||||
## 编译Python Wheel包
|
## 编译Python Wheel包
|
||||||
|
|
||||||
Python编译时,通过环境变量获取编译选项
|
Python编译时,通过环境变量获取编译选项
|
||||||
```
|
```bat
|
||||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||||
cd FastDeploy
|
cd FastDeploy
|
||||||
git checkout develop
|
git checkout develop
|
||||||
|
63
docs/compile/how_to_use_sdk_on_windows.md
Normal file
63
docs/compile/how_to_use_sdk_on_windows.md
Normal file
@@ -0,0 +1,63 @@
|
|||||||
|
# 在 Windows 使用 FastDeploy C++ SDK
|
||||||
|
|
||||||
|
在 Windows 下使用 FastDeploy C++ SDK 与在 Linux 下使用稍有不同。以下以 PPYOLOE 为例进行演示在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
|
||||||
|
|
||||||
|
在部署前,需确认以下两个步骤
|
||||||
|
|
||||||
|
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/the%20software%20and%20hardware%20requirements.md)
|
||||||
|
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/quick_start)
|
||||||
|
|
||||||
|
## 环境依赖
|
||||||
|
|
||||||
|
- cmake >= 3.12
|
||||||
|
- Visual Studio 16 2019
|
||||||
|
- cuda >= 11.2 (当WITH_GPU=ON)
|
||||||
|
- cudnn >= 11.2 (当WITH_GPU=ON)
|
||||||
|
- TensorRT >= 8.4 (当ENABLE_TRT_BACKEND=ON)
|
||||||
|
|
||||||
|
## 下载 FastDeploy Windows 10 C++ SDK
|
||||||
|
可以从以下链接下载编译好的 FastDeploy Windows 10 C++ SDK,SDK中包含了examples代码。
|
||||||
|
```text
|
||||||
|
https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-win-x64-gpu-0.2.0.zip
|
||||||
|
```
|
||||||
|
## 准备模型文件和测试图片
|
||||||
|
可以从以下链接下载模型文件和测试图片,并解压缩
|
||||||
|
```text
|
||||||
|
https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz # (下载后解压缩)
|
||||||
|
https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||||||
|
```
|
||||||
|
|
||||||
|
## 在 Windows 上编译 PPYOLOE
|
||||||
|
Windows菜单打开`x64 Native Tools Command Prompt for VS 2019`命令工具,cd到ppyoloe的demo路径
|
||||||
|
```bat
|
||||||
|
cd fastdeploy-win-x64-gpu-0.2.0\examples\vision\detection\paddledetection\cpp
|
||||||
|
```
|
||||||
|
```bat
|
||||||
|
mkdir build && cd build
|
||||||
|
cmake .. -G "Visual Studio 16 2019" -A x64 -DFASTDEPLOY_INSTALL_DIR=%cd%\..\..\..\..\..\..\..\fastdeploy-win-x64-gpu-0.2.0 -DCUDA_DIRECTORY="C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.2"
|
||||||
|
```
|
||||||
|
然后执行
|
||||||
|
```bat
|
||||||
|
msbuild infer_demo.sln /m:4 /p:Configuration=Release /p:Platform=x64
|
||||||
|
```
|
||||||
|
编译好的exe保存在Release目录下,在运行demo前,需要将模型和测试图片拷贝至该目录。另外,需要在终端指定DLL的搜索路径。请在build目录下执行以下命令。
|
||||||
|
```bat
|
||||||
|
set FASTDEPLOY_PATH=%cd%\..\..\..\..\..\..\..\fastdeploy-win-x64-gpu-0.2.0
|
||||||
|
set PATH=%FASTDEPLOY_PATH%\lib;%FASTDEPLOY_PATH%\third_libs\install\onnxruntime\lib;%FASTDEPLOY_PATH%\third_libs\install\opencv-win-x64-3.4.16\build\x64\vc15\bin;%FASTDEPLOY_PATH%\third_libs\install\paddle_inference\paddle\lib;%FASTDEPLOY_PATH%\third_libs\install\paddle_inference\third_party\install\mkldnn\lib;%FASTDEPLOY_PATH%\third_libs\install\paddle_inference\third_party\install\mklml\lib;%FASTDEPLOY_PATH%\third_libs\install\paddle2onnx\lib;%FASTDEPLOY_PATH%\third_libs\install\tensorrt\lib;%FASTDEPLOY_PATH%\third_libs\install\yaml-cpp\lib;%PATH%
|
||||||
|
```
|
||||||
|
注意,需要拷贝onnxruntime.dll到exe所在的目录。
|
||||||
|
```bat
|
||||||
|
copy /Y %FASTDEPLOY_PATH%\third_libs\install\onnxruntime\lib\onnxruntime* Release\
|
||||||
|
```
|
||||||
|
由于较新的Windows在System32系统目录下自带了onnxruntime.dll,因此就算设置了PATH,系统依然会出现onnxruntime的加载冲突。因此需要先拷贝demo用到的onnxruntime.dll到exe所在的目录。
|
||||||
|
```bat
|
||||||
|
where onnxruntime.dll
|
||||||
|
C:\Windows\System32\onnxruntime.dll # windows自带的onnxruntime.dll
|
||||||
|
```
|
||||||
|
## 运行 demo
|
||||||
|
```bat
|
||||||
|
cd Release
|
||||||
|
infer_ppyoloe_demo.exe ppyoloe_crn_l_300e_coco 000000014439.jpg 0 # CPU
|
||||||
|
infer_ppyoloe_demo.exe ppyoloe_crn_l_300e_coco 000000014439.jpg 1 # GPU
|
||||||
|
infer_ppyoloe_demo.exe ppyoloe_crn_l_300e_coco 000000014439.jpg 2 # GPU + TensorRT
|
||||||
|
```
|
@@ -1,7 +1,7 @@
|
|||||||
# 代码提交说明
|
# 代码提交说明
|
||||||
|
|
||||||
FastDeploy使用clang-format, cpplint检查和格式化代码,提交代码前,需安装pre-commit
|
FastDeploy使用clang-format, cpplint检查和格式化代码,提交代码前,需安装pre-commit
|
||||||
```
|
```bash
|
||||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||||
cd FastDeploy
|
cd FastDeploy
|
||||||
git checkout develop
|
git checkout develop
|
||||||
|
@@ -9,11 +9,11 @@ FastDeploy提供了在Windows/Linux/Mac上的预先编译Python Wheel包,开
|
|||||||
- Mac 支持Python3.6~3.9
|
- Mac 支持Python3.6~3.9
|
||||||
|
|
||||||
## 安装 CPU Python 版本
|
## 安装 CPU Python 版本
|
||||||
```
|
```bash
|
||||||
pip install fastdeploy-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html
|
pip install fastdeploy-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html
|
||||||
```
|
```
|
||||||
## 安装 GPU Python 版本
|
## 安装 GPU Python 版本
|
||||||
```
|
```bash
|
||||||
pip install fastdeploy-gpu-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html
|
pip install fastdeploy-gpu-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@@ -9,7 +9,7 @@
|
|||||||
|
|
||||||
以Linux上ResNet50_vd推理为例,在本目录执行如下命令即可完成编译测试
|
以Linux上ResNet50_vd推理为例,在本目录执行如下命令即可完成编译测试
|
||||||
|
|
||||||
```
|
```bash
|
||||||
#下载SDK,编译模型examples代码(SDK中包含了examples代码)
|
#下载SDK,编译模型examples代码(SDK中包含了examples代码)
|
||||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/libs/0.2.0/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
wget https://bj.bcebos.com/paddlehub/fastdeploy/libs/0.2.0/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
||||||
tar xvf fastdeploy-linux-x64-gpu-0.2.0.tgz
|
tar xvf fastdeploy-linux-x64-gpu-0.2.0.tgz
|
||||||
@@ -33,11 +33,14 @@ wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/Ima
|
|||||||
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 2
|
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 2
|
||||||
```
|
```
|
||||||
|
|
||||||
|
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||||||
|
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/compile/how_to_use_sdk_on_windows.md)
|
||||||
|
|
||||||
## PaddleClas C++接口
|
## PaddleClas C++接口
|
||||||
|
|
||||||
### PaddleClas类
|
### PaddleClas类
|
||||||
|
|
||||||
```
|
```c++
|
||||||
fastdeploy::vision::classification::PaddleClasModel(
|
fastdeploy::vision::classification::PaddleClasModel(
|
||||||
const string& model_file,
|
const string& model_file,
|
||||||
const string& params_file,
|
const string& params_file,
|
||||||
@@ -58,7 +61,7 @@ PaddleClas模型加载和初始化,其中model_file, params_file为训练模
|
|||||||
|
|
||||||
#### Predict函数
|
#### Predict函数
|
||||||
|
|
||||||
> ```
|
> ```c++
|
||||||
> PaddleClasModel::Predict(cv::Mat* im, ClassifyResult* result, int topk = 1)
|
> PaddleClasModel::Predict(cv::Mat* im, ClassifyResult* result, int topk = 1)
|
||||||
> ```
|
> ```
|
||||||
>
|
>
|
||||||
|
@@ -7,7 +7,7 @@
|
|||||||
|
|
||||||
本目录下提供`infer.py`快速完成ResNet50_vd在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
本目录下提供`infer.py`快速完成ResNet50_vd在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
||||||
|
|
||||||
```
|
```bash
|
||||||
#下载部署示例代码
|
#下载部署示例代码
|
||||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||||
cd FastDeploy/examples/vision/classification/paddleclas/python
|
cd FastDeploy/examples/vision/classification/paddleclas/python
|
||||||
@@ -26,7 +26,7 @@ python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg -
|
|||||||
```
|
```
|
||||||
|
|
||||||
运行完成后返回结果如下所示
|
运行完成后返回结果如下所示
|
||||||
```
|
```bash
|
||||||
ClassifyResult(
|
ClassifyResult(
|
||||||
label_ids: 153,
|
label_ids: 153,
|
||||||
scores: 0.686229,
|
scores: 0.686229,
|
||||||
@@ -35,7 +35,7 @@ scores: 0.686229,
|
|||||||
|
|
||||||
## PaddleClasModel Python接口
|
## PaddleClasModel Python接口
|
||||||
|
|
||||||
```
|
```python
|
||||||
fd.vision.classification.PaddleClasModel(model_file, params_file, config_file, runtime_option=None, model_format=Frontend.PADDLE)
|
fd.vision.classification.PaddleClasModel(model_file, params_file, config_file, runtime_option=None, model_format=Frontend.PADDLE)
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -51,7 +51,7 @@ PaddleClas模型加载和初始化,其中model_file, params_file为训练模
|
|||||||
|
|
||||||
### predict函数
|
### predict函数
|
||||||
|
|
||||||
> ```
|
> ```python
|
||||||
> PaddleClasModel.predict(input_image, topk=1)
|
> PaddleClasModel.predict(input_image, topk=1)
|
||||||
> ```
|
> ```
|
||||||
>
|
>
|
||||||
|
@@ -9,7 +9,7 @@
|
|||||||
|
|
||||||
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
||||||
|
|
||||||
```
|
```bash
|
||||||
mkdir build
|
mkdir build
|
||||||
cd build
|
cd build
|
||||||
wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
||||||
@@ -34,11 +34,14 @@ wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/0000000
|
|||||||
|
|
||||||
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301689-87ee5205-2eff-4204-b615-24c400f01323.jpg">
|
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301689-87ee5205-2eff-4204-b615-24c400f01323.jpg">
|
||||||
|
|
||||||
|
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||||||
|
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/compile/how_to_use_sdk_on_windows.md)
|
||||||
|
|
||||||
## NanoDetPlus C++接口
|
## NanoDetPlus C++接口
|
||||||
|
|
||||||
### NanoDetPlus类
|
### NanoDetPlus类
|
||||||
|
|
||||||
```
|
```c++
|
||||||
fastdeploy::vision::detection::NanoDetPlus(
|
fastdeploy::vision::detection::NanoDetPlus(
|
||||||
const string& model_file,
|
const string& model_file,
|
||||||
const string& params_file = "",
|
const string& params_file = "",
|
||||||
@@ -57,7 +60,7 @@ NanoDetPlus模型加载和初始化,其中model_file为导出的ONNX模型格
|
|||||||
|
|
||||||
#### Predict函数
|
#### Predict函数
|
||||||
|
|
||||||
> ```
|
> ```c++
|
||||||
> NanoDetPlus::Predict(cv::Mat* im, DetectionResult* result,
|
> NanoDetPlus::Predict(cv::Mat* im, DetectionResult* result,
|
||||||
> float conf_threshold = 0.25,
|
> float conf_threshold = 0.25,
|
||||||
> float nms_iou_threshold = 0.5)
|
> float nms_iou_threshold = 0.5)
|
||||||
|
@@ -7,7 +7,7 @@
|
|||||||
|
|
||||||
本目录下提供`infer.py`快速完成NanoDetPlus在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
本目录下提供`infer.py`快速完成NanoDetPlus在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
||||||
|
|
||||||
```
|
```bash
|
||||||
#下载部署示例代码
|
#下载部署示例代码
|
||||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||||
cd examples/vision/detection/nanodet_plus/python/
|
cd examples/vision/detection/nanodet_plus/python/
|
||||||
@@ -30,7 +30,7 @@ python infer.py --model nanodet-plus-m_320.onnx --image 000000014439.jpg --devic
|
|||||||
|
|
||||||
## NanoDetPlus Python接口
|
## NanoDetPlus Python接口
|
||||||
|
|
||||||
```
|
```python
|
||||||
fastdeploy.vision.detection.NanoDetPlus(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
fastdeploy.vision.detection.NanoDetPlus(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -45,7 +45,7 @@ NanoDetPlus模型加载和初始化,其中model_file为导出的ONNX模型格
|
|||||||
|
|
||||||
### predict函数
|
### predict函数
|
||||||
|
|
||||||
> ```
|
> ```python
|
||||||
> NanoDetPlus.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
> NanoDetPlus.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
||||||
> ```
|
> ```
|
||||||
>
|
>
|
||||||
|
@@ -9,7 +9,7 @@
|
|||||||
|
|
||||||
以Linux上推理为例,在本目录执行如下命令即可完成编译测试
|
以Linux上推理为例,在本目录执行如下命令即可完成编译测试
|
||||||
|
|
||||||
```
|
```bash
|
||||||
以ppyoloe为例进行推理部署
|
以ppyoloe为例进行推理部署
|
||||||
|
|
||||||
#下载SDK,编译模型examples代码(SDK中包含了examples代码)
|
#下载SDK,编译模型examples代码(SDK中包含了examples代码)
|
||||||
@@ -34,12 +34,15 @@ tar xvf ppyoloe_crn_l_300e_coco.tgz
|
|||||||
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 2
|
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 2
|
||||||
```
|
```
|
||||||
|
|
||||||
|
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||||||
|
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/compile/how_to_use_sdk_on_windows.md)
|
||||||
|
|
||||||
## PaddleDetection C++接口
|
## PaddleDetection C++接口
|
||||||
|
|
||||||
### 模型类
|
### 模型类
|
||||||
|
|
||||||
PaddleDetection目前支持6种模型系列,类名分别为`PPYOLOE`, `PicoDet`, `PaddleYOLOX`, `PPYOLO`, `FasterRCNN`,所有类名的构造函数和预测函数在参数上完全一致,本文档以PPYOLOE为例讲解API
|
PaddleDetection目前支持6种模型系列,类名分别为`PPYOLOE`, `PicoDet`, `PaddleYOLOX`, `PPYOLO`, `FasterRCNN`,所有类名的构造函数和预测函数在参数上完全一致,本文档以PPYOLOE为例讲解API
|
||||||
```
|
```c++
|
||||||
fastdeploy::vision::detection::PPYOLOE(
|
fastdeploy::vision::detection::PPYOLOE(
|
||||||
const string& model_file,
|
const string& model_file,
|
||||||
const string& params_file,
|
const string& params_file,
|
||||||
@@ -60,7 +63,7 @@ PaddleDetection PPYOLOE模型加载和初始化,其中model_file为导出的ON
|
|||||||
|
|
||||||
#### Predict函数
|
#### Predict函数
|
||||||
|
|
||||||
> ```
|
> ```c++
|
||||||
> PPYOLOE::Predict(cv::Mat* im, DetectionResult* result)
|
> PPYOLOE::Predict(cv::Mat* im, DetectionResult* result)
|
||||||
> ```
|
> ```
|
||||||
>
|
>
|
||||||
|
@@ -7,7 +7,7 @@
|
|||||||
|
|
||||||
本目录下提供`infer_xxx.py`快速完成PPYOLOE/PicoDet等模型在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
本目录下提供`infer_xxx.py`快速完成PPYOLOE/PicoDet等模型在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
||||||
|
|
||||||
```
|
```bash
|
||||||
#下载部署示例代码
|
#下载部署示例代码
|
||||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||||
cd examples/vision/detection/paddledetection/python/
|
cd examples/vision/detection/paddledetection/python/
|
||||||
@@ -32,7 +32,7 @@ python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439
|
|||||||
|
|
||||||
## PaddleDetection Python接口
|
## PaddleDetection Python接口
|
||||||
|
|
||||||
```
|
```python
|
||||||
fastdeploy.vision.detection.PPYOLOE(model_file, params_file, config_file, runtime_option=None, model_format=Frontend.PADDLE)
|
fastdeploy.vision.detection.PPYOLOE(model_file, params_file, config_file, runtime_option=None, model_format=Frontend.PADDLE)
|
||||||
fastdeploy.vision.detection.PicoDet(model_file, params_file, config_file, runtime_option=None, model_format=Frontend.PADDLE)
|
fastdeploy.vision.detection.PicoDet(model_file, params_file, config_file, runtime_option=None, model_format=Frontend.PADDLE)
|
||||||
fastdeploy.vision.detection.PaddleYOLOX(model_file, params_file, config_file, runtime_option=None, model_format=Frontend.PADDLE)
|
fastdeploy.vision.detection.PaddleYOLOX(model_file, params_file, config_file, runtime_option=None, model_format=Frontend.PADDLE)
|
||||||
@@ -54,7 +54,7 @@ PaddleDetection模型加载和初始化,其中model_file, params_file为导
|
|||||||
### predict函数
|
### predict函数
|
||||||
|
|
||||||
PaddleDetection中各个模型,包括PPYOLOE/PicoDet/PaddleYOLOX/YOLOv3/PPYOLO/FasterRCNN,均提供如下同样的成员函数用于进行图像的检测
|
PaddleDetection中各个模型,包括PPYOLOE/PicoDet/PaddleYOLOX/YOLOv3/PPYOLO/FasterRCNN,均提供如下同样的成员函数用于进行图像的检测
|
||||||
> ```
|
> ```python
|
||||||
> PPYOLOE.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
> PPYOLOE.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
||||||
> ```
|
> ```
|
||||||
>
|
>
|
||||||
|
@@ -11,7 +11,7 @@
|
|||||||
|
|
||||||
访问[ScaledYOLOv4](https://github.com/WongKinYiu/ScaledYOLOv4)官方github库,按照指引下载安装,下载`scaledyolov4.pt` 模型,利用 `models/export.py` 得到`onnx`格式文件。如果您导出的`onnx`模型出现问题,可以参考[ScaledYOLOv4#401](https://github.com/WongKinYiu/ScaledYOLOv4/issues/401)的解决办法
|
访问[ScaledYOLOv4](https://github.com/WongKinYiu/ScaledYOLOv4)官方github库,按照指引下载安装,下载`scaledyolov4.pt` 模型,利用 `models/export.py` 得到`onnx`格式文件。如果您导出的`onnx`模型出现问题,可以参考[ScaledYOLOv4#401](https://github.com/WongKinYiu/ScaledYOLOv4/issues/401)的解决办法
|
||||||
|
|
||||||
```
|
```bash
|
||||||
#下载ScaledYOLOv4模型文件
|
#下载ScaledYOLOv4模型文件
|
||||||
Download from the goole drive https://drive.google.com/file/d/1aXZZE999sHMP1gev60XhNChtHPRMH3Fz/view?usp=sharing
|
Download from the goole drive https://drive.google.com/file/d/1aXZZE999sHMP1gev60XhNChtHPRMH3Fz/view?usp=sharing
|
||||||
|
|
||||||
|
@@ -9,7 +9,7 @@
|
|||||||
|
|
||||||
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
||||||
|
|
||||||
```
|
```bash
|
||||||
mkdir build
|
mkdir build
|
||||||
cd build
|
cd build
|
||||||
wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
||||||
@@ -34,11 +34,14 @@ wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/0000000
|
|||||||
|
|
||||||
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301908-7027cf41-af51-4485-bd32-87aca0e77336.jpg">
|
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301908-7027cf41-af51-4485-bd32-87aca0e77336.jpg">
|
||||||
|
|
||||||
|
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||||||
|
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/compile/how_to_use_sdk_on_windows.md)
|
||||||
|
|
||||||
## ScaledYOLOv4 C++接口
|
## ScaledYOLOv4 C++接口
|
||||||
|
|
||||||
### ScaledYOLOv4类
|
### ScaledYOLOv4类
|
||||||
|
|
||||||
```
|
```c++
|
||||||
fastdeploy::vision::detection::ScaledYOLOv4(
|
fastdeploy::vision::detection::ScaledYOLOv4(
|
||||||
const string& model_file,
|
const string& model_file,
|
||||||
const string& params_file = "",
|
const string& params_file = "",
|
||||||
@@ -57,7 +60,7 @@ ScaledYOLOv4模型加载和初始化,其中model_file为导出的ONNX模型格
|
|||||||
|
|
||||||
#### Predict函数
|
#### Predict函数
|
||||||
|
|
||||||
> ```
|
> ```c++
|
||||||
> ScaledYOLOv4::Predict(cv::Mat* im, DetectionResult* result,
|
> ScaledYOLOv4::Predict(cv::Mat* im, DetectionResult* result,
|
||||||
> float conf_threshold = 0.25,
|
> float conf_threshold = 0.25,
|
||||||
> float nms_iou_threshold = 0.5)
|
> float nms_iou_threshold = 0.5)
|
||||||
|
@@ -7,7 +7,7 @@
|
|||||||
|
|
||||||
本目录下提供`infer.py`快速完成ScaledYOLOv4在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
本目录下提供`infer.py`快速完成ScaledYOLOv4在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
||||||
|
|
||||||
```
|
```bash
|
||||||
#下载部署示例代码
|
#下载部署示例代码
|
||||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||||
cd examples/vision/detection/scaledyolov4/python/
|
cd examples/vision/detection/scaledyolov4/python/
|
||||||
@@ -30,7 +30,7 @@ python infer.py --model scaled_yolov4-p5.onnx --image 000000014439.jpg --device
|
|||||||
|
|
||||||
## ScaledYOLOv4 Python接口
|
## ScaledYOLOv4 Python接口
|
||||||
|
|
||||||
```
|
```python
|
||||||
fastdeploy.vision.detection.ScaledYOLOv4(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
fastdeploy.vision.detection.ScaledYOLOv4(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -45,7 +45,7 @@ ScaledYOLOv4模型加载和初始化,其中model_file为导出的ONNX模型格
|
|||||||
|
|
||||||
### predict函数
|
### predict函数
|
||||||
|
|
||||||
> ```
|
> ```python
|
||||||
> ScaledYOLOv4.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
> ScaledYOLOv4.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
||||||
> ```
|
> ```
|
||||||
>
|
>
|
||||||
|
@@ -11,7 +11,7 @@
|
|||||||
|
|
||||||
访问[YOLOR](https://github.com/WongKinYiu/yolor)官方github库,按照指引下载安装,下载`yolor.pt` 模型,利用 `models/export.py` 得到`onnx`格式文件。如果您导出的`onnx`模型出现精度不达标或者是数据维度的问题,可以参考[yolor#32](https://github.com/WongKinYiu/yolor/issues/32)的解决办法
|
访问[YOLOR](https://github.com/WongKinYiu/yolor)官方github库,按照指引下载安装,下载`yolor.pt` 模型,利用 `models/export.py` 得到`onnx`格式文件。如果您导出的`onnx`模型出现精度不达标或者是数据维度的问题,可以参考[yolor#32](https://github.com/WongKinYiu/yolor/issues/32)的解决办法
|
||||||
|
|
||||||
```
|
```bash
|
||||||
#下载yolor模型文件
|
#下载yolor模型文件
|
||||||
wget https://github.com/WongKinYiu/yolor/releases/download/weights/yolor-d6-paper-570.pt
|
wget https://github.com/WongKinYiu/yolor/releases/download/weights/yolor-d6-paper-570.pt
|
||||||
|
|
||||||
|
@@ -9,7 +9,7 @@
|
|||||||
|
|
||||||
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
||||||
|
|
||||||
```
|
```bash
|
||||||
mkdir build
|
mkdir build
|
||||||
cd build
|
cd build
|
||||||
wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
||||||
@@ -34,11 +34,14 @@ wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/0000000
|
|||||||
|
|
||||||
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301926-fa3711bf-5984-4e61-9c98-7fdeacb622e9.jpg">
|
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301926-fa3711bf-5984-4e61-9c98-7fdeacb622e9.jpg">
|
||||||
|
|
||||||
|
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||||||
|
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/compile/how_to_use_sdk_on_windows.md)
|
||||||
|
|
||||||
## YOLOR C++接口
|
## YOLOR C++接口
|
||||||
|
|
||||||
### YOLOR类
|
### YOLOR类
|
||||||
|
|
||||||
```
|
```c++
|
||||||
fastdeploy::vision::detection::YOLOR(
|
fastdeploy::vision::detection::YOLOR(
|
||||||
const string& model_file,
|
const string& model_file,
|
||||||
const string& params_file = "",
|
const string& params_file = "",
|
||||||
@@ -57,7 +60,7 @@ YOLOR模型加载和初始化,其中model_file为导出的ONNX模型格式。
|
|||||||
|
|
||||||
#### Predict函数
|
#### Predict函数
|
||||||
|
|
||||||
> ```
|
> ```c++
|
||||||
> YOLOR::Predict(cv::Mat* im, DetectionResult* result,
|
> YOLOR::Predict(cv::Mat* im, DetectionResult* result,
|
||||||
> float conf_threshold = 0.25,
|
> float conf_threshold = 0.25,
|
||||||
> float nms_iou_threshold = 0.5)
|
> float nms_iou_threshold = 0.5)
|
||||||
|
@@ -7,7 +7,7 @@
|
|||||||
|
|
||||||
本目录下提供`infer.py`快速完成YOLOR在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
本目录下提供`infer.py`快速完成YOLOR在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
||||||
|
|
||||||
```
|
```bash
|
||||||
#下载部署示例代码
|
#下载部署示例代码
|
||||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||||
cd examples/vision/detection/yolor/python/
|
cd examples/vision/detection/yolor/python/
|
||||||
@@ -30,7 +30,7 @@ python infer.py --model yolor-p6-paper-541-640-640.onnx --image 000000014439.jpg
|
|||||||
|
|
||||||
## YOLOR Python接口
|
## YOLOR Python接口
|
||||||
|
|
||||||
```
|
```python
|
||||||
fastdeploy.vision.detection.YOLOR(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
fastdeploy.vision.detection.YOLOR(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -45,7 +45,7 @@ YOLOR模型加载和初始化,其中model_file为导出的ONNX模型格式
|
|||||||
|
|
||||||
### predict函数
|
### predict函数
|
||||||
|
|
||||||
> ```
|
> ```python
|
||||||
> YOLOR.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
> YOLOR.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
||||||
> ```
|
> ```
|
||||||
>
|
>
|
||||||
|
@@ -9,7 +9,7 @@
|
|||||||
|
|
||||||
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
||||||
|
|
||||||
```
|
```bash
|
||||||
mkdir build
|
mkdir build
|
||||||
cd build
|
cd build
|
||||||
wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
||||||
@@ -34,11 +34,14 @@ wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/0000000
|
|||||||
|
|
||||||
<img width="640" src="https://user-images.githubusercontent.com/67993288/184309358-d803347a-8981-44b6-b589-4608021ad0f4.jpg">
|
<img width="640" src="https://user-images.githubusercontent.com/67993288/184309358-d803347a-8981-44b6-b589-4608021ad0f4.jpg">
|
||||||
|
|
||||||
|
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||||||
|
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/compile/how_to_use_sdk_on_windows.md)
|
||||||
|
|
||||||
## YOLOv5 C++接口
|
## YOLOv5 C++接口
|
||||||
|
|
||||||
### YOLOv5类
|
### YOLOv5类
|
||||||
|
|
||||||
```
|
```c++
|
||||||
fastdeploy::vision::detection::YOLOv5(
|
fastdeploy::vision::detection::YOLOv5(
|
||||||
const string& model_file,
|
const string& model_file,
|
||||||
const string& params_file = "",
|
const string& params_file = "",
|
||||||
@@ -57,7 +60,7 @@ YOLOv5模型加载和初始化,其中model_file为导出的ONNX模型格式。
|
|||||||
|
|
||||||
#### Predict函数
|
#### Predict函数
|
||||||
|
|
||||||
> ```
|
> ```c++
|
||||||
> YOLOv5::Predict(cv::Mat* im, DetectionResult* result,
|
> YOLOv5::Predict(cv::Mat* im, DetectionResult* result,
|
||||||
> float conf_threshold = 0.25,
|
> float conf_threshold = 0.25,
|
||||||
> float nms_iou_threshold = 0.5)
|
> float nms_iou_threshold = 0.5)
|
||||||
|
@@ -7,7 +7,7 @@
|
|||||||
|
|
||||||
本目录下提供`infer.py`快速完成YOLOv5在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
本目录下提供`infer.py`快速完成YOLOv5在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
||||||
|
|
||||||
```
|
```bash
|
||||||
#下载部署示例代码
|
#下载部署示例代码
|
||||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||||
cd examples/vision/detection/yolov5/python/
|
cd examples/vision/detection/yolov5/python/
|
||||||
@@ -30,7 +30,7 @@ python infer.py --model yolov5s.onnx --image 000000014439.jpg --device gpu --use
|
|||||||
|
|
||||||
## YOLOv5 Python接口
|
## YOLOv5 Python接口
|
||||||
|
|
||||||
```
|
```python
|
||||||
fastdeploy.vision.detection.YOLOv5(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
fastdeploy.vision.detection.YOLOv5(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -45,7 +45,7 @@ YOLOv5模型加载和初始化,其中model_file为导出的ONNX模型格式
|
|||||||
|
|
||||||
### predict函数
|
### predict函数
|
||||||
|
|
||||||
> ```
|
> ```python
|
||||||
> YOLOv5.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
> YOLOv5.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
||||||
> ```
|
> ```
|
||||||
>
|
>
|
||||||
|
@@ -12,7 +12,7 @@
|
|||||||
- 自动获取
|
- 自动获取
|
||||||
访问[YOLOv5Lite](https://github.com/ppogg/YOLOv5-Lite)
|
访问[YOLOv5Lite](https://github.com/ppogg/YOLOv5-Lite)
|
||||||
官方github库,按照指引下载安装,下载`yolov5-lite-xx.onnx` 模型(Tips:官方提供的ONNX文件目前是没有decode模块的)
|
官方github库,按照指引下载安装,下载`yolov5-lite-xx.onnx` 模型(Tips:官方提供的ONNX文件目前是没有decode模块的)
|
||||||
```
|
```bash
|
||||||
#下载yolov5-lite模型文件(.onnx)
|
#下载yolov5-lite模型文件(.onnx)
|
||||||
Download from https://drive.google.com/file/d/1bJByk9eoS6pv8Z3N4bcLRCV3i7uk24aU/view
|
Download from https://drive.google.com/file/d/1bJByk9eoS6pv8Z3N4bcLRCV3i7uk24aU/view
|
||||||
官方Repo也支持百度云下载
|
官方Repo也支持百度云下载
|
||||||
@@ -27,7 +27,7 @@
|
|||||||
|
|
||||||
首先需要参考[YOLOv5-Lite#189](https://github.com/ppogg/YOLOv5-Lite/pull/189)的解决办法,修改代码。
|
首先需要参考[YOLOv5-Lite#189](https://github.com/ppogg/YOLOv5-Lite/pull/189)的解决办法,修改代码。
|
||||||
|
|
||||||
```
|
```bash
|
||||||
#下载yolov5-lite模型文件(.pt)
|
#下载yolov5-lite模型文件(.pt)
|
||||||
Download from https://drive.google.com/file/d/1oftzqOREGqDCerf7DtD5BZp9YWELlkMe/view
|
Download from https://drive.google.com/file/d/1oftzqOREGqDCerf7DtD5BZp9YWELlkMe/view
|
||||||
官方Repo也支持百度云下载
|
官方Repo也支持百度云下载
|
||||||
@@ -39,7 +39,7 @@
|
|||||||
```
|
```
|
||||||
- 导出无decode模块的ONNX文件(不需要修改代码)
|
- 导出无decode模块的ONNX文件(不需要修改代码)
|
||||||
|
|
||||||
```
|
```bash
|
||||||
#下载yolov5-lite模型文件
|
#下载yolov5-lite模型文件
|
||||||
Download from https://drive.google.com/file/d/1oftzqOREGqDCerf7DtD5BZp9YWELlkMe/view
|
Download from https://drive.google.com/file/d/1oftzqOREGqDCerf7DtD5BZp9YWELlkMe/view
|
||||||
官方Repo也支持百度云下载
|
官方Repo也支持百度云下载
|
||||||
|
@@ -9,7 +9,7 @@
|
|||||||
|
|
||||||
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
||||||
|
|
||||||
```
|
```bash
|
||||||
mkdir build
|
mkdir build
|
||||||
cd build
|
cd build
|
||||||
wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
||||||
@@ -34,11 +34,14 @@ wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/0000000
|
|||||||
|
|
||||||
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301943-263c8153-a52a-4533-a7c1-ee86d05d314b.jpg">
|
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301943-263c8153-a52a-4533-a7c1-ee86d05d314b.jpg">
|
||||||
|
|
||||||
|
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||||||
|
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/compile/how_to_use_sdk_on_windows.md)
|
||||||
|
|
||||||
## YOLOv5Lite C++接口
|
## YOLOv5Lite C++接口
|
||||||
|
|
||||||
### YOLOv5Lite类
|
### YOLOv5Lite类
|
||||||
|
|
||||||
```
|
```c++
|
||||||
fastdeploy::vision::detection::YOLOv5Lite(
|
fastdeploy::vision::detection::YOLOv5Lite(
|
||||||
const string& model_file,
|
const string& model_file,
|
||||||
const string& params_file = "",
|
const string& params_file = "",
|
||||||
@@ -57,7 +60,7 @@ YOLOv5Lite模型加载和初始化,其中model_file为导出的ONNX模型格
|
|||||||
|
|
||||||
#### Predict函数
|
#### Predict函数
|
||||||
|
|
||||||
> ```
|
> ```c++
|
||||||
> YOLOv5Lite::Predict(cv::Mat* im, DetectionResult* result,
|
> YOLOv5Lite::Predict(cv::Mat* im, DetectionResult* result,
|
||||||
> float conf_threshold = 0.25,
|
> float conf_threshold = 0.25,
|
||||||
> float nms_iou_threshold = 0.5)
|
> float nms_iou_threshold = 0.5)
|
||||||
|
@@ -7,7 +7,7 @@
|
|||||||
|
|
||||||
本目录下提供`infer.py`快速完成YOLOv5Lite在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
本目录下提供`infer.py`快速完成YOLOv5Lite在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
||||||
|
|
||||||
```
|
```bash
|
||||||
#下载部署示例代码
|
#下载部署示例代码
|
||||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||||
cd examples/vision/detection/yolov5lite/python/
|
cd examples/vision/detection/yolov5lite/python/
|
||||||
@@ -30,7 +30,7 @@ python infer.py --model v5Lite-g-sim-640.onnx --image 000000014439.jpg --device
|
|||||||
|
|
||||||
## YOLOv5Lite Python接口
|
## YOLOv5Lite Python接口
|
||||||
|
|
||||||
```
|
```python
|
||||||
fastdeploy.vision.detection.YOLOv5Lite(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
fastdeploy.vision.detection.YOLOv5Lite(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -45,7 +45,7 @@ YOLOv5Lite模型加载和初始化,其中model_file为导出的ONNX模型格
|
|||||||
|
|
||||||
### predict函数
|
### predict函数
|
||||||
|
|
||||||
> ```
|
> ```python
|
||||||
> YOLOv5Lite.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
> YOLOv5Lite.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
||||||
> ```
|
> ```
|
||||||
>
|
>
|
||||||
|
@@ -9,7 +9,7 @@
|
|||||||
|
|
||||||
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
||||||
|
|
||||||
```
|
```bash
|
||||||
mkdir build
|
mkdir build
|
||||||
cd build
|
cd build
|
||||||
wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
||||||
@@ -34,11 +34,14 @@ wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/0000000
|
|||||||
|
|
||||||
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301725-390e4abb-db2b-482d-931d-469381322626.jpg">
|
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301725-390e4abb-db2b-482d-931d-469381322626.jpg">
|
||||||
|
|
||||||
|
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||||||
|
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/compile/how_to_use_sdk_on_windows.md)
|
||||||
|
|
||||||
## YOLOv6 C++接口
|
## YOLOv6 C++接口
|
||||||
|
|
||||||
### YOLOv6类
|
### YOLOv6类
|
||||||
|
|
||||||
```
|
```c++
|
||||||
fastdeploy::vision::detection::YOLOv6(
|
fastdeploy::vision::detection::YOLOv6(
|
||||||
const string& model_file,
|
const string& model_file,
|
||||||
const string& params_file = "",
|
const string& params_file = "",
|
||||||
@@ -57,7 +60,7 @@ YOLOv6模型加载和初始化,其中model_file为导出的ONNX模型格式。
|
|||||||
|
|
||||||
#### Predict函数
|
#### Predict函数
|
||||||
|
|
||||||
> ```
|
> ```c++
|
||||||
> YOLOv6::Predict(cv::Mat* im, DetectionResult* result,
|
> YOLOv6::Predict(cv::Mat* im, DetectionResult* result,
|
||||||
> float conf_threshold = 0.25,
|
> float conf_threshold = 0.25,
|
||||||
> float nms_iou_threshold = 0.5)
|
> float nms_iou_threshold = 0.5)
|
||||||
|
@@ -7,7 +7,7 @@
|
|||||||
|
|
||||||
本目录下提供`infer.py`快速完成YOLOv6在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
本目录下提供`infer.py`快速完成YOLOv6在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
||||||
|
|
||||||
```
|
```bash
|
||||||
#下载部署示例代码
|
#下载部署示例代码
|
||||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||||
cd examples/vision/detection/yolov6/python/
|
cd examples/vision/detection/yolov6/python/
|
||||||
@@ -31,7 +31,7 @@ python infer.py --model yolov6s.onnx --image 000000014439.jpg --device gpu --use
|
|||||||
|
|
||||||
## YOLOv6 Python接口
|
## YOLOv6 Python接口
|
||||||
|
|
||||||
```
|
```python
|
||||||
fastdeploy.vision.detection.YOLOv6(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
fastdeploy.vision.detection.YOLOv6(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -46,7 +46,7 @@ YOLOv6模型加载和初始化,其中model_file为导出的ONNX模型格式
|
|||||||
|
|
||||||
### predict函数
|
### predict函数
|
||||||
|
|
||||||
> ```
|
> ```python
|
||||||
> YOLOv6.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
> YOLOv6.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
||||||
> ```
|
> ```
|
||||||
>
|
>
|
||||||
|
@@ -10,7 +10,7 @@
|
|||||||
|
|
||||||
## 导出ONNX模型
|
## 导出ONNX模型
|
||||||
|
|
||||||
```
|
```bash
|
||||||
# 下载yolov7模型文件
|
# 下载yolov7模型文件
|
||||||
wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt
|
wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt
|
||||||
|
|
||||||
|
@@ -9,7 +9,7 @@
|
|||||||
|
|
||||||
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
||||||
|
|
||||||
```
|
```bash
|
||||||
mkdir build
|
mkdir build
|
||||||
cd build
|
cd build
|
||||||
wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
||||||
@@ -34,11 +34,14 @@ wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/0000000
|
|||||||
|
|
||||||
<img width="640" src="https://user-images.githubusercontent.com/67993288/183847558-abcd9a57-9cd9-4891-b09a-710963c99b74.jpg">
|
<img width="640" src="https://user-images.githubusercontent.com/67993288/183847558-abcd9a57-9cd9-4891-b09a-710963c99b74.jpg">
|
||||||
|
|
||||||
|
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||||||
|
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/compile/how_to_use_sdk_on_windows.md)
|
||||||
|
|
||||||
## YOLOv7 C++接口
|
## YOLOv7 C++接口
|
||||||
|
|
||||||
### YOLOv7类
|
### YOLOv7类
|
||||||
|
|
||||||
```
|
```c++
|
||||||
fastdeploy::vision::detection::YOLOv7(
|
fastdeploy::vision::detection::YOLOv7(
|
||||||
const string& model_file,
|
const string& model_file,
|
||||||
const string& params_file = "",
|
const string& params_file = "",
|
||||||
@@ -57,7 +60,7 @@ YOLOv7模型加载和初始化,其中model_file为导出的ONNX模型格式。
|
|||||||
|
|
||||||
#### Predict函数
|
#### Predict函数
|
||||||
|
|
||||||
> ```
|
> ```c++
|
||||||
> YOLOv7::Predict(cv::Mat* im, DetectionResult* result,
|
> YOLOv7::Predict(cv::Mat* im, DetectionResult* result,
|
||||||
> float conf_threshold = 0.25,
|
> float conf_threshold = 0.25,
|
||||||
> float nms_iou_threshold = 0.5)
|
> float nms_iou_threshold = 0.5)
|
||||||
|
@@ -7,7 +7,7 @@
|
|||||||
|
|
||||||
本目录下提供`infer.py`快速完成YOLOv7在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
本目录下提供`infer.py`快速完成YOLOv7在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
||||||
|
|
||||||
```
|
```bash
|
||||||
#下载部署示例代码
|
#下载部署示例代码
|
||||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||||
cd examples/vision/detection/yolov7/python/
|
cd examples/vision/detection/yolov7/python/
|
||||||
@@ -30,7 +30,7 @@ python infer.py --model yolov7.onnx --image 000000014439.jpg --device gpu --use_
|
|||||||
|
|
||||||
## YOLOv7 Python接口
|
## YOLOv7 Python接口
|
||||||
|
|
||||||
```
|
```python
|
||||||
fastdeploy.vision.detection.YOLOv7(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
fastdeploy.vision.detection.YOLOv7(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -45,7 +45,7 @@ YOLOv7模型加载和初始化,其中model_file为导出的ONNX模型格式
|
|||||||
|
|
||||||
### predict函数
|
### predict函数
|
||||||
|
|
||||||
> ```
|
> ```python
|
||||||
> YOLOv7.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
> YOLOv7.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
||||||
> ```
|
> ```
|
||||||
>
|
>
|
||||||
|
@@ -9,7 +9,7 @@
|
|||||||
|
|
||||||
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
||||||
|
|
||||||
```
|
```bash
|
||||||
mkdir build
|
mkdir build
|
||||||
cd build
|
cd build
|
||||||
wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
||||||
@@ -34,11 +34,14 @@ wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/0000000
|
|||||||
|
|
||||||
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301746-04595d76-454a-4f07-8c7d-6f41418f8ae3.jpg">
|
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301746-04595d76-454a-4f07-8c7d-6f41418f8ae3.jpg">
|
||||||
|
|
||||||
|
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||||||
|
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/compile/how_to_use_sdk_on_windows.md)
|
||||||
|
|
||||||
## YOLOX C++接口
|
## YOLOX C++接口
|
||||||
|
|
||||||
### YOLOX类
|
### YOLOX类
|
||||||
|
|
||||||
```
|
```c++
|
||||||
fastdeploy::vision::detection::YOLOX(
|
fastdeploy::vision::detection::YOLOX(
|
||||||
const string& model_file,
|
const string& model_file,
|
||||||
const string& params_file = "",
|
const string& params_file = "",
|
||||||
@@ -57,7 +60,7 @@ YOLOX模型加载和初始化,其中model_file为导出的ONNX模型格式。
|
|||||||
|
|
||||||
#### Predict函数
|
#### Predict函数
|
||||||
|
|
||||||
> ```
|
> ```c++
|
||||||
> YOLOX::Predict(cv::Mat* im, DetectionResult* result,
|
> YOLOX::Predict(cv::Mat* im, DetectionResult* result,
|
||||||
> float conf_threshold = 0.25,
|
> float conf_threshold = 0.25,
|
||||||
> float nms_iou_threshold = 0.5)
|
> float nms_iou_threshold = 0.5)
|
||||||
|
@@ -7,7 +7,7 @@
|
|||||||
|
|
||||||
本目录下提供`infer.py`快速完成YOLOX在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
本目录下提供`infer.py`快速完成YOLOX在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
||||||
|
|
||||||
```
|
```bash
|
||||||
#下载部署示例代码
|
#下载部署示例代码
|
||||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||||
cd examples/vision/detection/yolox/python/
|
cd examples/vision/detection/yolox/python/
|
||||||
@@ -30,7 +30,7 @@ python infer.py --model yolox_s.onnx --image 000000014439.jpg --device gpu --use
|
|||||||
|
|
||||||
## YOLOX Python接口
|
## YOLOX Python接口
|
||||||
|
|
||||||
```
|
```python
|
||||||
fastdeploy.vision.detection.YOLOX(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
fastdeploy.vision.detection.YOLOX(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -45,7 +45,7 @@ YOLOX模型加载和初始化,其中model_file为导出的ONNX模型格式
|
|||||||
|
|
||||||
### predict函数
|
### predict函数
|
||||||
|
|
||||||
> ```
|
> ```python
|
||||||
> YOLOX.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
> YOLOX.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
||||||
> ```
|
> ```
|
||||||
>
|
>
|
||||||
|
@@ -9,7 +9,7 @@
|
|||||||
|
|
||||||
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
||||||
|
|
||||||
```
|
```bash
|
||||||
mkdir build
|
mkdir build
|
||||||
cd build
|
cd build
|
||||||
wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
||||||
@@ -34,11 +34,13 @@ wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/li
|
|||||||
|
|
||||||
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301763-1b950047-c17f-4819-b175-c743b699c3b1.jpg">
|
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301763-1b950047-c17f-4819-b175-c743b699c3b1.jpg">
|
||||||
|
|
||||||
|
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||||||
|
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/compile/how_to_use_sdk_on_windows.md)
|
||||||
## RetinaFace C++接口
|
## RetinaFace C++接口
|
||||||
|
|
||||||
### RetinaFace类
|
### RetinaFace类
|
||||||
|
|
||||||
```
|
```c++
|
||||||
fastdeploy::vision::facedet::RetinaFace(
|
fastdeploy::vision::facedet::RetinaFace(
|
||||||
const string& model_file,
|
const string& model_file,
|
||||||
const string& params_file = "",
|
const string& params_file = "",
|
||||||
@@ -57,7 +59,7 @@ RetinaFace模型加载和初始化,其中model_file为导出的ONNX模型格
|
|||||||
|
|
||||||
#### Predict函数
|
#### Predict函数
|
||||||
|
|
||||||
> ```
|
> ```c++
|
||||||
> RetinaFace::Predict(cv::Mat* im, FaceDetectionResult* result,
|
> RetinaFace::Predict(cv::Mat* im, FaceDetectionResult* result,
|
||||||
> float conf_threshold = 0.25,
|
> float conf_threshold = 0.25,
|
||||||
> float nms_iou_threshold = 0.5)
|
> float nms_iou_threshold = 0.5)
|
||||||
|
@@ -7,7 +7,7 @@
|
|||||||
|
|
||||||
本目录下提供`infer.py`快速完成RetinaFace在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
本目录下提供`infer.py`快速完成RetinaFace在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
||||||
|
|
||||||
```
|
```bash
|
||||||
#下载部署示例代码
|
#下载部署示例代码
|
||||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||||
cd examples/vision//retinaface/python/
|
cd examples/vision//retinaface/python/
|
||||||
@@ -30,7 +30,7 @@ python infer.py --model Pytorch_RetinaFace_mobile0.25-640-640.onnx --image test_
|
|||||||
|
|
||||||
## RetinaFace Python接口
|
## RetinaFace Python接口
|
||||||
|
|
||||||
```
|
```python
|
||||||
fastdeploy.vision.facedet.RetinaFace(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
fastdeploy.vision.facedet.RetinaFace(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -45,7 +45,7 @@ RetinaFace模型加载和初始化,其中model_file为导出的ONNX模型格
|
|||||||
|
|
||||||
### predict函数
|
### predict函数
|
||||||
|
|
||||||
> ```
|
> ```python
|
||||||
> RetinaFace.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
> RetinaFace.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
||||||
> ```
|
> ```
|
||||||
>
|
>
|
||||||
|
@@ -8,7 +8,7 @@
|
|||||||
|
|
||||||
## 导出ONNX模型
|
## 导出ONNX模型
|
||||||
|
|
||||||
```
|
```bash
|
||||||
#下载scrfd模型文件
|
#下载scrfd模型文件
|
||||||
e.g. download from https://onedrive.live.com/?authkey=%21ABbFJx2JMhNjhNA&id=4A83B6B633B029CC%215542&cid=4A83B6B633B029CC
|
e.g. download from https://onedrive.live.com/?authkey=%21ABbFJx2JMhNjhNA&id=4A83B6B633B029CC%215542&cid=4A83B6B633B029CC
|
||||||
|
|
||||||
|
@@ -9,7 +9,7 @@
|
|||||||
|
|
||||||
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
||||||
|
|
||||||
```
|
```bash
|
||||||
mkdir build
|
mkdir build
|
||||||
cd build
|
cd build
|
||||||
wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
||||||
@@ -34,11 +34,14 @@ wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/li
|
|||||||
|
|
||||||
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301789-1981d065-208f-4a6b-857c-9a0f9a63e0b1.jpg">
|
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301789-1981d065-208f-4a6b-857c-9a0f9a63e0b1.jpg">
|
||||||
|
|
||||||
|
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||||||
|
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/compile/how_to_use_sdk_on_windows.md)
|
||||||
|
|
||||||
## SCRFD C++接口
|
## SCRFD C++接口
|
||||||
|
|
||||||
### SCRFD类
|
### SCRFD类
|
||||||
|
|
||||||
```
|
```c++
|
||||||
fastdeploy::vision::facedet::SCRFD(
|
fastdeploy::vision::facedet::SCRFD(
|
||||||
const string& model_file,
|
const string& model_file,
|
||||||
const string& params_file = "",
|
const string& params_file = "",
|
||||||
@@ -57,7 +60,7 @@ SCRFD模型加载和初始化,其中model_file为导出的ONNX模型格式。
|
|||||||
|
|
||||||
#### Predict函数
|
#### Predict函数
|
||||||
|
|
||||||
> ```
|
> ```c++
|
||||||
> SCRFD::Predict(cv::Mat* im, FaceDetectionResult* result,
|
> SCRFD::Predict(cv::Mat* im, FaceDetectionResult* result,
|
||||||
> float conf_threshold = 0.25,
|
> float conf_threshold = 0.25,
|
||||||
> float nms_iou_threshold = 0.5)
|
> float nms_iou_threshold = 0.5)
|
||||||
|
@@ -7,7 +7,7 @@
|
|||||||
|
|
||||||
本目录下提供`infer.py`快速完成SCRFD在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
本目录下提供`infer.py`快速完成SCRFD在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
||||||
|
|
||||||
```
|
```bash
|
||||||
#下载部署示例代码
|
#下载部署示例代码
|
||||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||||
cd examples/vision/facedet/scrfd/python/
|
cd examples/vision/facedet/scrfd/python/
|
||||||
@@ -30,7 +30,7 @@ python infer.py --model scrfd_500m_bnkps_shape640x640.onnx --image test_lite_fac
|
|||||||
|
|
||||||
## SCRFD Python接口
|
## SCRFD Python接口
|
||||||
|
|
||||||
```
|
```python
|
||||||
fastdeploy.vision.facedet.SCRFD(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
fastdeploy.vision.facedet.SCRFD(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -45,7 +45,7 @@ SCRFD模型加载和初始化,其中model_file为导出的ONNX模型格式
|
|||||||
|
|
||||||
### predict函数
|
### predict函数
|
||||||
|
|
||||||
> ```
|
> ```python
|
||||||
> SCRFD.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
> SCRFD.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
||||||
> ```
|
> ```
|
||||||
>
|
>
|
||||||
|
@@ -9,7 +9,7 @@
|
|||||||
|
|
||||||
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
||||||
|
|
||||||
```
|
```bash
|
||||||
mkdir build
|
mkdir build
|
||||||
cd build
|
cd build
|
||||||
wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
||||||
@@ -34,11 +34,14 @@ wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/li
|
|||||||
|
|
||||||
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301821-0788483b-a72b-42b0-a566-b6430f184f6e.jpg">
|
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301821-0788483b-a72b-42b0-a566-b6430f184f6e.jpg">
|
||||||
|
|
||||||
|
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||||||
|
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/compile/how_to_use_sdk_on_windows.md)
|
||||||
|
|
||||||
## UltraFace C++接口
|
## UltraFace C++接口
|
||||||
|
|
||||||
### UltraFace类
|
### UltraFace类
|
||||||
|
|
||||||
```
|
```c++
|
||||||
fastdeploy::vision::facedet::UltraFace(
|
fastdeploy::vision::facedet::UltraFace(
|
||||||
const string& model_file,
|
const string& model_file,
|
||||||
const string& params_file = "",
|
const string& params_file = "",
|
||||||
@@ -57,7 +60,7 @@ UltraFace模型加载和初始化,其中model_file为导出的ONNX模型格式
|
|||||||
|
|
||||||
#### Predict函数
|
#### Predict函数
|
||||||
|
|
||||||
> ```
|
> ```c++
|
||||||
> UltraFace::Predict(cv::Mat* im, FaceDetectionResult* result,
|
> UltraFace::Predict(cv::Mat* im, FaceDetectionResult* result,
|
||||||
> float conf_threshold = 0.25,
|
> float conf_threshold = 0.25,
|
||||||
> float nms_iou_threshold = 0.5)
|
> float nms_iou_threshold = 0.5)
|
||||||
|
@@ -7,7 +7,7 @@
|
|||||||
|
|
||||||
本目录下提供`infer.py`快速完成UltraFace在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
本目录下提供`infer.py`快速完成UltraFace在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
||||||
|
|
||||||
```
|
```bash
|
||||||
#下载部署示例代码
|
#下载部署示例代码
|
||||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||||
cd examples/vision/facedet/ultraface/python/
|
cd examples/vision/facedet/ultraface/python/
|
||||||
@@ -30,7 +30,7 @@ python infer.py --model version-RFB-320.onnx --image test_lite_face_detector_3.j
|
|||||||
|
|
||||||
## UltraFace Python接口
|
## UltraFace Python接口
|
||||||
|
|
||||||
```
|
```python
|
||||||
fastdeploy.vision.facedet.UltraFace(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
fastdeploy.vision.facedet.UltraFace(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -45,7 +45,7 @@ UltraFace模型加载和初始化,其中model_file为导出的ONNX模型格式
|
|||||||
|
|
||||||
### predict函数
|
### predict函数
|
||||||
|
|
||||||
> ```
|
> ```python
|
||||||
> UltraFace.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
> UltraFace.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
||||||
> ```
|
> ```
|
||||||
>
|
>
|
||||||
|
@@ -9,7 +9,7 @@
|
|||||||
|
|
||||||
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
||||||
|
|
||||||
```
|
```bash
|
||||||
mkdir build
|
mkdir build
|
||||||
cd build
|
cd build
|
||||||
wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
||||||
@@ -34,11 +34,14 @@ wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/li
|
|||||||
|
|
||||||
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301839-a29aefae-16c9-4196-bf9d-9c6cf694f02d.jpg">
|
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301839-a29aefae-16c9-4196-bf9d-9c6cf694f02d.jpg">
|
||||||
|
|
||||||
|
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||||||
|
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/compile/how_to_use_sdk_on_windows.md)
|
||||||
|
|
||||||
## YOLOv5Face C++接口
|
## YOLOv5Face C++接口
|
||||||
|
|
||||||
### YOLOv5Face类
|
### YOLOv5Face类
|
||||||
|
|
||||||
```
|
```c++
|
||||||
fastdeploy::vision::facedet::YOLOv5Face(
|
fastdeploy::vision::facedet::YOLOv5Face(
|
||||||
const string& model_file,
|
const string& model_file,
|
||||||
const string& params_file = "",
|
const string& params_file = "",
|
||||||
@@ -57,7 +60,7 @@ YOLOv5Face模型加载和初始化,其中model_file为导出的ONNX模型格
|
|||||||
|
|
||||||
#### Predict函数
|
#### Predict函数
|
||||||
|
|
||||||
> ```
|
> ```c++
|
||||||
> YOLOv5Face::Predict(cv::Mat* im, FaceDetectionResult* result,
|
> YOLOv5Face::Predict(cv::Mat* im, FaceDetectionResult* result,
|
||||||
> float conf_threshold = 0.25,
|
> float conf_threshold = 0.25,
|
||||||
> float nms_iou_threshold = 0.5)
|
> float nms_iou_threshold = 0.5)
|
||||||
|
@@ -7,7 +7,7 @@
|
|||||||
|
|
||||||
本目录下提供`infer.py`快速完成YOLOv5Face在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
本目录下提供`infer.py`快速完成YOLOv5Face在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
||||||
|
|
||||||
```
|
```bash
|
||||||
#下载部署示例代码
|
#下载部署示例代码
|
||||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||||
cd examples/vision/facedet/yolov5face/python/
|
cd examples/vision/facedet/yolov5face/python/
|
||||||
@@ -30,7 +30,7 @@ python infer.py --model yolov5s-face.onnx --image test_lite_face_detector_3.jpg
|
|||||||
|
|
||||||
## YOLOv5Face Python接口
|
## YOLOv5Face Python接口
|
||||||
|
|
||||||
```
|
```python
|
||||||
fastdeploy.vision.facedet.YOLOv5Face(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
fastdeploy.vision.facedet.YOLOv5Face(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -45,7 +45,7 @@ YOLOv5Face模型加载和初始化,其中model_file为导出的ONNX模型格
|
|||||||
|
|
||||||
### predict函数
|
### predict函数
|
||||||
|
|
||||||
> ```
|
> ```python
|
||||||
> YOLOv5Face.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
> YOLOv5Face.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
||||||
> ```
|
> ```
|
||||||
>
|
>
|
||||||
|
@@ -18,7 +18,7 @@
|
|||||||
访问[ArcFace](https://github.com/deepinsight/insightface/tree/master/recognition/arcface_torch)官方github库,按照指引下载安装,下载pt模型文件,利用 `torch2onnx.py` 得到`onnx`格式文件。
|
访问[ArcFace](https://github.com/deepinsight/insightface/tree/master/recognition/arcface_torch)官方github库,按照指引下载安装,下载pt模型文件,利用 `torch2onnx.py` 得到`onnx`格式文件。
|
||||||
|
|
||||||
* 下载ArcFace模型文件
|
* 下载ArcFace模型文件
|
||||||
```
|
```bash
|
||||||
Link: https://pan.baidu.com/share/init?surl=CL-l4zWqsI1oDuEEYVhj-g code: e8pw
|
Link: https://pan.baidu.com/share/init?surl=CL-l4zWqsI1oDuEEYVhj-g code: e8pw
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@@ -9,7 +9,7 @@
|
|||||||
|
|
||||||
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
||||||
|
|
||||||
```
|
```bash
|
||||||
mkdir build
|
mkdir build
|
||||||
cd build
|
cd build
|
||||||
wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
||||||
@@ -40,11 +40,14 @@ wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_2.JPG
|
|||||||
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184321622-d9a494c3-72f3-47f1-97c5-8a2372de491f.JPG">
|
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184321622-d9a494c3-72f3-47f1-97c5-8a2372de491f.JPG">
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
|
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||||||
|
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/compile/how_to_use_sdk_on_windows.md)
|
||||||
|
|
||||||
## InsightFace C++接口
|
## InsightFace C++接口
|
||||||
|
|
||||||
### ArcFace类
|
### ArcFace类
|
||||||
|
|
||||||
```
|
```c++
|
||||||
fastdeploy::vision::faceid::ArcFace(
|
fastdeploy::vision::faceid::ArcFace(
|
||||||
const string& model_file,
|
const string& model_file,
|
||||||
const string& params_file = "",
|
const string& params_file = "",
|
||||||
@@ -56,7 +59,7 @@ ArcFace模型加载和初始化,其中model_file为导出的ONNX模型格式
|
|||||||
|
|
||||||
### CosFace类
|
### CosFace类
|
||||||
|
|
||||||
```
|
```c++
|
||||||
fastdeploy::vision::faceid::CosFace(
|
fastdeploy::vision::faceid::CosFace(
|
||||||
const string& model_file,
|
const string& model_file,
|
||||||
const string& params_file = "",
|
const string& params_file = "",
|
||||||
@@ -68,7 +71,7 @@ CosFace模型加载和初始化,其中model_file为导出的ONNX模型格式
|
|||||||
|
|
||||||
### PartialFC类
|
### PartialFC类
|
||||||
|
|
||||||
```
|
```c++
|
||||||
fastdeploy::vision::faceid::PartialFC(
|
fastdeploy::vision::faceid::PartialFC(
|
||||||
const string& model_file,
|
const string& model_file,
|
||||||
const string& params_file = "",
|
const string& params_file = "",
|
||||||
@@ -80,7 +83,7 @@ PartialFC模型加载和初始化,其中model_file为导出的ONNX模型格式
|
|||||||
|
|
||||||
### VPL类
|
### VPL类
|
||||||
|
|
||||||
```
|
```c++
|
||||||
fastdeploy::vision::faceid::VPL(
|
fastdeploy::vision::faceid::VPL(
|
||||||
const string& model_file,
|
const string& model_file,
|
||||||
const string& params_file = "",
|
const string& params_file = "",
|
||||||
@@ -98,7 +101,7 @@ VPL模型加载和初始化,其中model_file为导出的ONNX模型格式。
|
|||||||
|
|
||||||
#### Predict函数
|
#### Predict函数
|
||||||
|
|
||||||
> ```
|
> ```c++
|
||||||
> ArcFace::Predict(cv::Mat* im, FaceRecognitionResult* result,
|
> ArcFace::Predict(cv::Mat* im, FaceRecognitionResult* result,
|
||||||
> float conf_threshold = 0.25,
|
> float conf_threshold = 0.25,
|
||||||
> float nms_iou_threshold = 0.5)
|
> float nms_iou_threshold = 0.5)
|
||||||
|
@@ -8,7 +8,7 @@
|
|||||||
|
|
||||||
以ArcFace为例子, 提供`infer_arcface.py`快速完成ArcFace在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
以ArcFace为例子, 提供`infer_arcface.py`快速完成ArcFace在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
||||||
|
|
||||||
```
|
```bash
|
||||||
#下载部署示例代码
|
#下载部署示例代码
|
||||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||||
cd examples/vision/faceid/insightface/python/
|
cd examples/vision/faceid/insightface/python/
|
||||||
@@ -35,7 +35,7 @@ python infer_arcface.py --model ms1mv3_arcface_r100.onnx --face test_lite_focal_
|
|||||||
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184321622-d9a494c3-72f3-47f1-97c5-8a2372de491f.JPG">
|
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184321622-d9a494c3-72f3-47f1-97c5-8a2372de491f.JPG">
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
```
|
```bash
|
||||||
Prediction Done!
|
Prediction Done!
|
||||||
--- [Face 0]:FaceRecognitionResult: [Dim(512), Min(-2.309220), Max(2.372197), Mean(0.016987)]
|
--- [Face 0]:FaceRecognitionResult: [Dim(512), Min(-2.309220), Max(2.372197), Mean(0.016987)]
|
||||||
--- [Face 1]:FaceRecognitionResult: [Dim(512), Min(-2.288258), Max(1.995104), Mean(-0.003400)]
|
--- [Face 1]:FaceRecognitionResult: [Dim(512), Min(-2.288258), Max(1.995104), Mean(-0.003400)]
|
||||||
@@ -46,7 +46,7 @@ Detect Done! Cosine 01: 0.814385, Cosine 02:-0.059388
|
|||||||
|
|
||||||
## InsightFace Python接口
|
## InsightFace Python接口
|
||||||
|
|
||||||
```
|
```python
|
||||||
fastdeploy.vision.faceid.ArcFace(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
fastdeploy.vision.faceid.ArcFace(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
||||||
fastdeploy.vision.faceid.CosFace(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
fastdeploy.vision.faceid.CosFace(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
||||||
fastdeploy.vision.faceid.PartialFC(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
fastdeploy.vision.faceid.PartialFC(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
||||||
@@ -64,7 +64,7 @@ ArcFace模型加载和初始化,其中model_file为导出的ONNX模型格式
|
|||||||
|
|
||||||
### predict函数
|
### predict函数
|
||||||
|
|
||||||
> ```
|
> ```python
|
||||||
> ArcFace.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
> ArcFace.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
||||||
> ```
|
> ```
|
||||||
>
|
>
|
||||||
|
@@ -9,7 +9,7 @@
|
|||||||
|
|
||||||
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
||||||
|
|
||||||
```
|
```bash
|
||||||
mkdir build
|
mkdir build
|
||||||
cd build
|
cd build
|
||||||
wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
||||||
@@ -36,11 +36,14 @@ wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/li
|
|||||||
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301892-457f7014-2dc0-4ad1-b688-43b41fac299a.jpg">
|
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301892-457f7014-2dc0-4ad1-b688-43b41fac299a.jpg">
|
||||||
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301871-c234dfdf-3b3d-46e4-8886-e1ac156c9e4a.jpg">
|
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301871-c234dfdf-3b3d-46e4-8886-e1ac156c9e4a.jpg">
|
||||||
|
|
||||||
|
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||||||
|
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/compile/how_to_use_sdk_on_windows.md)
|
||||||
|
|
||||||
## MODNet C++接口
|
## MODNet C++接口
|
||||||
|
|
||||||
### MODNet类
|
### MODNet类
|
||||||
|
|
||||||
```
|
```c++
|
||||||
fastdeploy::vision::matting::MODNet(
|
fastdeploy::vision::matting::MODNet(
|
||||||
const string& model_file,
|
const string& model_file,
|
||||||
const string& params_file = "",
|
const string& params_file = "",
|
||||||
@@ -59,7 +62,7 @@ MODNet模型加载和初始化,其中model_file为导出的ONNX模型格式。
|
|||||||
|
|
||||||
#### Predict函数
|
#### Predict函数
|
||||||
|
|
||||||
> ```
|
> ```c++
|
||||||
> MODNet::Predict(cv::Mat* im, MattingResult* result,
|
> MODNet::Predict(cv::Mat* im, MattingResult* result,
|
||||||
> float conf_threshold = 0.25,
|
> float conf_threshold = 0.25,
|
||||||
> float nms_iou_threshold = 0.5)
|
> float nms_iou_threshold = 0.5)
|
||||||
|
@@ -7,7 +7,7 @@
|
|||||||
|
|
||||||
本目录下提供`infer.py`快速完成MODNet在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
本目录下提供`infer.py`快速完成MODNet在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
||||||
|
|
||||||
```
|
```bash
|
||||||
#下载部署示例代码
|
#下载部署示例代码
|
||||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||||
cd examples/vision/matting/modnet/python/
|
cd examples/vision/matting/modnet/python/
|
||||||
@@ -31,7 +31,7 @@ python infer.py --model modnet_photographic_portrait_matting.onnx --image test_l
|
|||||||
|
|
||||||
## MODNet Python接口
|
## MODNet Python接口
|
||||||
|
|
||||||
```
|
```python
|
||||||
fastdeploy.vision.matting.MODNet(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
fastdeploy.vision.matting.MODNet(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX)
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -46,7 +46,7 @@ MODNet模型加载和初始化,其中model_file为导出的ONNX模型格式
|
|||||||
|
|
||||||
### predict函数
|
### predict函数
|
||||||
|
|
||||||
> ```
|
> ```python
|
||||||
> MODNet.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
> MODNet.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
||||||
> ```
|
> ```
|
||||||
>
|
>
|
||||||
|
@@ -9,7 +9,7 @@
|
|||||||
|
|
||||||
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
||||||
|
|
||||||
```
|
```bash
|
||||||
mkdir build
|
mkdir build
|
||||||
cd build
|
cd build
|
||||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/libs/0.2.0/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
wget https://bj.bcebos.com/paddlehub/fastdeploy/libs/0.2.0/fastdeploy-linux-x64-gpu-0.2.0.tgz
|
||||||
@@ -37,11 +37,14 @@ wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
|
|||||||
<img src="https://user-images.githubusercontent.com/16222477/184588768-45ee673b-ef1f-40f4-9fbd-6b1a9ce17c59.png", width=512px, height=256px />
|
<img src="https://user-images.githubusercontent.com/16222477/184588768-45ee673b-ef1f-40f4-9fbd-6b1a9ce17c59.png", width=512px, height=256px />
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
|
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||||||
|
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/compile/how_to_use_sdk_on_windows.md)
|
||||||
|
|
||||||
## PaddleSeg C++接口
|
## PaddleSeg C++接口
|
||||||
|
|
||||||
### PaddleSeg类
|
### PaddleSeg类
|
||||||
|
|
||||||
```
|
```c++
|
||||||
fastdeploy::vision::segmentation::PaddleSegModel(
|
fastdeploy::vision::segmentation::PaddleSegModel(
|
||||||
const string& model_file,
|
const string& model_file,
|
||||||
const string& params_file = "",
|
const string& params_file = "",
|
||||||
@@ -62,7 +65,7 @@ PaddleSegModel模型加载和初始化,其中model_file为导出的Paddle模
|
|||||||
|
|
||||||
#### Predict函数
|
#### Predict函数
|
||||||
|
|
||||||
> ```
|
> ```c++
|
||||||
> PaddleSegModel::Predict(cv::Mat* im, DetectionResult* result)
|
> PaddleSegModel::Predict(cv::Mat* im, DetectionResult* result)
|
||||||
> ```
|
> ```
|
||||||
>
|
>
|
||||||
|
@@ -7,7 +7,7 @@
|
|||||||
|
|
||||||
本目录下提供`infer.py`快速完成Unet在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
本目录下提供`infer.py`快速完成Unet在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
||||||
|
|
||||||
```
|
```bash
|
||||||
#下载部署示例代码
|
#下载部署示例代码
|
||||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||||
cd FastDeploy/examples/vision/segmentation/paddleseg/python
|
cd FastDeploy/examples/vision/segmentation/paddleseg/python
|
||||||
@@ -32,7 +32,7 @@ python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_
|
|||||||
|
|
||||||
## PaddleSegModel Python接口
|
## PaddleSegModel Python接口
|
||||||
|
|
||||||
```
|
```python
|
||||||
fd.vision.segmentation.PaddleSegModel(model_file, params_file, config_file, runtime_option=None, model_format=Frontend.PADDLE)
|
fd.vision.segmentation.PaddleSegModel(model_file, params_file, config_file, runtime_option=None, model_format=Frontend.PADDLE)
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -48,7 +48,7 @@ PaddleSeg模型加载和初始化,其中model_file, params_file以及config_fi
|
|||||||
|
|
||||||
### predict函数
|
### predict函数
|
||||||
|
|
||||||
> ```
|
> ```python
|
||||||
> PaddleSegModel.predict(input_image)
|
> PaddleSegModel.predict(input_image)
|
||||||
> ```
|
> ```
|
||||||
>
|
>
|
||||||
|
@@ -1,3 +1,4 @@
|
|||||||
|
wheel
|
||||||
requests
|
requests
|
||||||
tqdm
|
tqdm
|
||||||
numpy
|
numpy
|
||||||
|
Reference in New Issue
Block a user