mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 16:22:57 +08:00
supports internode_ll_two_stage (#4143)
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
* supports internode_ll_two_stage * supports internode_ll_two_stage * supports internode_ll_two_stage * supports internode_ll_two_stage
This commit is contained in:
@@ -294,6 +294,8 @@ class ParallelConfig:
|
||||
self.engine_pid: Optional[int] = None
|
||||
# Do profile or not
|
||||
self.do_profile: bool = False
|
||||
# Use internode_ll_two_stage or not
|
||||
self.use_internode_ll_two_stage: bool = False
|
||||
|
||||
self.max_num_batched_tokens: int = 2048
|
||||
# splitwise role
|
||||
|
@@ -200,6 +200,11 @@ class EngineArgs:
|
||||
Flag to enable the custom all-reduce kernel.
|
||||
"""
|
||||
|
||||
use_internode_ll_two_stage: bool = False
|
||||
"""
|
||||
Flag to use the internode_ll_two_stage kernel.
|
||||
"""
|
||||
|
||||
engine_worker_queue_port: str = "8002"
|
||||
"""
|
||||
Port for worker queue communication.
|
||||
@@ -629,6 +634,12 @@ class EngineArgs:
|
||||
default=EngineArgs.disable_custom_all_reduce,
|
||||
help="Flag to disable custom all-reduce.",
|
||||
)
|
||||
parallel_group.add_argument(
|
||||
"--use-internode-ll-two-stage",
|
||||
action="store_true",
|
||||
default=EngineArgs.use_internode_ll_two_stage,
|
||||
help="Flag to use the internode_ll_two_stage kernel.",
|
||||
)
|
||||
parallel_group.add_argument(
|
||||
"--max-num-seqs",
|
||||
type=int,
|
||||
|
@@ -483,6 +483,7 @@ class LLMEngine:
|
||||
"dynamic_load_weight": self.cfg.load_config.dynamic_load_weight,
|
||||
"disable_any_whitespace": self.cfg.disable_any_whitespace,
|
||||
"disable_custom_all_reduce": self.cfg.parallel_config.disable_custom_all_reduce,
|
||||
"use_internode_ll_two_stage": self.cfg.parallel_config.use_internode_ll_two_stage,
|
||||
"enable_logprob": self.cfg.model_config.enable_logprob,
|
||||
"lm_head_fp32": self.cfg.model_config.lm_head_fp32,
|
||||
}
|
||||
|
@@ -64,6 +64,8 @@ class DeepEPBuffer:
|
||||
num_max_dispatch_tokens_per_rank: int,
|
||||
splitwise_role: str,
|
||||
moe_phase: MoEPhase,
|
||||
use_internode_ll_two_stage: bool = False,
|
||||
top_k: int = 8,
|
||||
):
|
||||
self.group = group
|
||||
self.hidden_size = hidden_size
|
||||
@@ -72,6 +74,8 @@ class DeepEPBuffer:
|
||||
self.num_max_dispatch_tokens_per_rank = num_max_dispatch_tokens_per_rank
|
||||
self.splitwise_role = splitwise_role
|
||||
self.moe_phase = moe_phase
|
||||
self.use_internode_ll_two_stage = use_internode_ll_two_stage
|
||||
self.top_k = top_k
|
||||
|
||||
self.deepep_buffer = None
|
||||
self.num_nvl_bytes = 0
|
||||
@@ -95,12 +99,26 @@ class DeepEPBuffer:
|
||||
)
|
||||
|
||||
if self.splitwise_role == "mixed" or self.moe_phase.phase == "decode":
|
||||
if not self.use_internode_ll_two_stage:
|
||||
num_rdma_bytes = deep_ep.Buffer.get_low_latency_rdma_size_hint(
|
||||
self.num_max_dispatch_tokens_per_rank,
|
||||
self.hidden_size,
|
||||
self.ep_size,
|
||||
self.num_experts,
|
||||
)
|
||||
else:
|
||||
num_rdma_bytes = deep_ep.Buffer.get_low_latency_rdma_size_hint_two_stage(
|
||||
self.num_max_dispatch_tokens_per_rank, self.hidden_size, self.ep_size, self.num_experts, self.top_k
|
||||
)
|
||||
num_nvl_bytes = deep_ep.Buffer.get_low_latency_nvl_size_hint_two_stage(
|
||||
self.num_max_dispatch_tokens_per_rank,
|
||||
self.hidden_size,
|
||||
self.ep_size,
|
||||
self.num_experts,
|
||||
self.top_k,
|
||||
True, # just supports dispatch_use_fp8 = True now!
|
||||
)
|
||||
self.num_nvl_bytes = max(self.num_nvl_bytes, num_nvl_bytes)
|
||||
self.num_rdma_bytes = max(self.num_rdma_bytes, num_rdma_bytes)
|
||||
|
||||
logger.info(f"DeepEP num nvl bytes : {self.num_nvl_bytes}, num rdma bytes : {self.num_rdma_bytes}")
|
||||
@@ -172,11 +190,21 @@ class DeepEPBuffer:
|
||||
|
||||
def clean_low_latency_buffer(self):
|
||||
if self.deepep_buffer is not None:
|
||||
if not self.use_internode_ll_two_stage:
|
||||
self.deepep_buffer.clean_low_latency_buffer(
|
||||
self.num_max_dispatch_tokens_per_rank,
|
||||
self.hidden_size,
|
||||
self.num_experts,
|
||||
)
|
||||
else:
|
||||
self.deepep_buffer.clean_low_latency_two_stage_buffer(
|
||||
self.num_max_dispatch_tokens_per_rank,
|
||||
self.hidden_size,
|
||||
self.num_experts,
|
||||
self.top_k,
|
||||
self.ep_size,
|
||||
True, # just supports dispatch_use_fp8 = True now!
|
||||
)
|
||||
|
||||
def barrier_all(self):
|
||||
if self.deepep_buffer is not None:
|
||||
@@ -201,6 +229,8 @@ class DeepEPEngine:
|
||||
moe_phase: MoEPhase,
|
||||
async_finish: bool = False,
|
||||
group=None,
|
||||
use_internode_ll_two_stage: bool = False,
|
||||
top_k: int = 8,
|
||||
):
|
||||
if group is None:
|
||||
group = paddle.distributed.new_group(range(ep_size))
|
||||
@@ -210,10 +240,10 @@ class DeepEPEngine:
|
||||
self.hidden_size = hidden_size
|
||||
self.num_experts = num_experts
|
||||
self.num_local_experts = num_experts // ep_size
|
||||
self.top_k = top_k
|
||||
self.async_finish = async_finish
|
||||
from paddle.base.core import Config
|
||||
|
||||
self.ep_config = Config(24, 6, 256)
|
||||
self.ep_config = None
|
||||
|
||||
# Store phase and role for buffer management
|
||||
self._splitwise_role = splitwise_role
|
||||
@@ -228,6 +258,8 @@ class DeepEPEngine:
|
||||
num_max_dispatch_tokens_per_rank=num_max_dispatch_tokens_per_rank,
|
||||
splitwise_role=splitwise_role,
|
||||
moe_phase=moe_phase,
|
||||
use_internode_ll_two_stage=use_internode_ll_two_stage,
|
||||
top_k=self.top_k,
|
||||
)
|
||||
self.buffer.create_buffer()
|
||||
|
||||
@@ -274,6 +306,37 @@ class DeepEPEngine:
|
||||
|
||||
return packed_recv_x, recv_expert_count, handle, dispatch_hook
|
||||
|
||||
def low_latency_dispatch_two_stage(
|
||||
self,
|
||||
hidden_states: paddle.Tensor,
|
||||
topk_idx: paddle.Tensor,
|
||||
topk_weights: paddle.Tensor,
|
||||
expertwise_scale,
|
||||
use_fp8: bool = False,
|
||||
):
|
||||
if self.deepep_engine is None:
|
||||
raise RuntimeError("DeepEP buffer not initialized!")
|
||||
|
||||
(
|
||||
packed_recv_x,
|
||||
packed_recv_count,
|
||||
_,
|
||||
handle,
|
||||
_,
|
||||
dispatch_hook,
|
||||
) = self.deepep_engine.low_latency_dispatch_two_stage(
|
||||
hidden_states,
|
||||
topk_idx,
|
||||
topk_weights,
|
||||
self.buffer.num_max_dispatch_tokens_per_rank,
|
||||
self.num_experts,
|
||||
use_fp8=use_fp8,
|
||||
async_finish=False,
|
||||
return_recv_hook=True,
|
||||
)
|
||||
|
||||
return packed_recv_x, packed_recv_count, handle, dispatch_hook
|
||||
|
||||
def low_latency_combine(
|
||||
self,
|
||||
hidden_states: paddle.Tensor,
|
||||
@@ -300,6 +363,28 @@ class DeepEPEngine:
|
||||
)
|
||||
return combined_hidden_states, combine_hook
|
||||
|
||||
def low_latency_combine_two_stage(
|
||||
self,
|
||||
hidden_states: paddle.Tensor,
|
||||
topk_idx: paddle.Tensor,
|
||||
topk_weights: paddle.Tensor,
|
||||
dispatch_use_fp8: bool,
|
||||
handle,
|
||||
):
|
||||
if self.deepep_engine is None:
|
||||
raise RuntimeError("DeepEP buffer not initialized!")
|
||||
|
||||
combined_hidden_states, _, combine_hook = self.deepep_engine.low_latency_combine_two_stage(
|
||||
hidden_states,
|
||||
topk_idx,
|
||||
topk_weights,
|
||||
handle,
|
||||
async_finish=False,
|
||||
dispatch_use_fp8=dispatch_use_fp8,
|
||||
return_recv_hook=True,
|
||||
)
|
||||
return combined_hidden_states, combine_hook
|
||||
|
||||
def clean_low_latency_buffer(self):
|
||||
self.buffer.clean_low_latency_buffer()
|
||||
|
||||
@@ -324,10 +409,12 @@ class EPRunner:
|
||||
ep_rank: int = 0,
|
||||
redundant_experts_num: int = 0,
|
||||
ep_group=None,
|
||||
use_internode_ll_two_stage: bool = False,
|
||||
):
|
||||
self.top_k = top_k
|
||||
self.num_experts = num_experts
|
||||
self.redundant_experts_num = redundant_experts_num
|
||||
self.use_internode_ll_two_stage = use_internode_ll_two_stage
|
||||
self.ep_engine = DeepEPEngine(
|
||||
num_max_dispatch_tokens_per_rank=num_max_dispatch_tokens_per_rank,
|
||||
hidden_size=hidden_size,
|
||||
@@ -337,6 +424,8 @@ class EPRunner:
|
||||
splitwise_role=splitwise_role,
|
||||
moe_phase=moe_phase,
|
||||
group=ep_group,
|
||||
use_internode_ll_two_stage=self.use_internode_ll_two_stage,
|
||||
top_k=self.top_k,
|
||||
)
|
||||
|
||||
def moe_select(self, layer: nn.Layer, gate_out: paddle.Tensor):
|
||||
@@ -416,6 +505,7 @@ class EPPrefillRunner(EPRunner):
|
||||
redundant_experts_num: int = 0,
|
||||
moe_phase: MoEPhase = MoEPhase("prefill"),
|
||||
ep_group=None,
|
||||
use_internode_ll_two_stage: bool = False,
|
||||
):
|
||||
super().__init__(
|
||||
top_k,
|
||||
@@ -428,6 +518,7 @@ class EPPrefillRunner(EPRunner):
|
||||
ep_rank=ep_rank,
|
||||
redundant_experts_num=redundant_experts_num,
|
||||
ep_group=ep_group,
|
||||
use_internode_ll_two_stage=use_internode_ll_two_stage,
|
||||
)
|
||||
|
||||
def dispatch(
|
||||
@@ -502,6 +593,7 @@ class EPDecoderRunner(EPRunner):
|
||||
redundant_experts_num: int = 0,
|
||||
ep_group=None,
|
||||
moe_phase: MoEPhase = MoEPhase("decode"),
|
||||
use_internode_ll_two_stage: bool = False,
|
||||
):
|
||||
super().__init__(
|
||||
top_k,
|
||||
@@ -514,6 +606,7 @@ class EPDecoderRunner(EPRunner):
|
||||
ep_rank=ep_rank,
|
||||
redundant_experts_num=redundant_experts_num,
|
||||
ep_group=ep_group,
|
||||
use_internode_ll_two_stage=use_internode_ll_two_stage,
|
||||
)
|
||||
|
||||
def dispatch(
|
||||
@@ -527,18 +620,30 @@ class EPDecoderRunner(EPRunner):
|
||||
expertwise_scale = kwargs.get("expertwise_scale", None)
|
||||
use_fp8 = kwargs.get("use_fp8", False)
|
||||
|
||||
if not self.use_internode_ll_two_stage:
|
||||
recv_hidden_states, recv_expert_count, handle, dispatch_hook = self.ep_engine.low_latency_dispatch(
|
||||
x, topk_idx, expertwise_scale, use_fp8
|
||||
)
|
||||
else:
|
||||
# just supports dispatch_use_fp8 = True now!
|
||||
assert use_fp8 is True
|
||||
recv_hidden_states, recv_expert_count, handle, dispatch_hook = (
|
||||
self.ep_engine.low_latency_dispatch_two_stage(x, topk_idx, topk_weights, expertwise_scale, use_fp8)
|
||||
)
|
||||
if dispatch_hook is not None:
|
||||
dispatch_hook()
|
||||
|
||||
return recv_hidden_states, recv_expert_count, handle
|
||||
|
||||
def combine(self, ffn_out, topk_idx, topk_weights, handle):
|
||||
if not self.use_internode_ll_two_stage:
|
||||
combined_hidden_states, combine_hook = self.ep_engine.low_latency_combine(
|
||||
ffn_out, topk_idx, topk_weights, handle
|
||||
)
|
||||
else:
|
||||
combined_hidden_states, combine_hook = self.ep_engine.low_latency_combine_two_stage(
|
||||
ffn_out, topk_idx, topk_weights, True, handle # just supports dispatch_use_fp8 = True now!
|
||||
)
|
||||
if combine_hook is not None:
|
||||
combine_hook()
|
||||
|
||||
|
@@ -64,6 +64,7 @@ class MoEMethodBase(QuantMethodBase):
|
||||
"ep_rank": layer.ep_rank,
|
||||
"redundant_experts_num": layer.fd_config.model_config.redundant_experts_num,
|
||||
"ep_group": layer.fd_config.parallel_config.ep_group,
|
||||
"use_internode_ll_two_stage": layer.fd_config.parallel_config.use_internode_ll_two_stage,
|
||||
}
|
||||
|
||||
config = layer.fd_config
|
||||
|
@@ -506,6 +506,11 @@ def parse_args():
|
||||
action="store_true",
|
||||
help="enable chunked prefill",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use_internode_ll_two_stage",
|
||||
action="store_true",
|
||||
help="enable internode_ll_two_stage",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--speculative_config",
|
||||
type=json.loads,
|
||||
|
Reference in New Issue
Block a user