mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
Add PaddleClas infer.py (#107)
* Update README.md * Update README.md * Update README.md * Create README.md * Update README.md * Update README.md * Update README.md * Update README.md * Add evaluation calculate time and fix some bugs * Update classification __init__ * Move to ppseg * Add segmentation doc * Add PaddleClas infer.py * Update PaddleClas infer.py * Delete .infer.py.swp Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
@@ -1,5 +1,6 @@
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
@@ -9,7 +10,9 @@ def parse_arguments():
|
||||
parser.add_argument(
|
||||
"--model", required=True, help="Path of PaddleClas model.")
|
||||
parser.add_argument(
|
||||
"--image", required=True, help="Path of test image file.")
|
||||
"--image", type=str, required=True, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
"--topk", type=int, default=1, help="Return topk results.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
@@ -31,7 +34,8 @@ def build_option(args):
|
||||
|
||||
if args.use_trt:
|
||||
option.use_trt_backend()
|
||||
option.set_trt_input_shape("images", [1, 3, 640, 640])
|
||||
option.set_trt_input_shape("inputs", [1, 3, 224, 224],
|
||||
[1, 3, 224, 224], [1, 3, 224, 224])
|
||||
return option
|
||||
|
||||
|
||||
@@ -39,9 +43,13 @@ args = parse_arguments()
|
||||
|
||||
# 配置runtime,加载模型
|
||||
runtime_option = build_option(args)
|
||||
model = fd.vision.classification.PaddleClasModel(args.model, runtime_option=runtime_option)
|
||||
model_file = os.path.join(args.model, "inference.pdmodel")
|
||||
params_file = os.path.join(args.model, "inference.pdiparams")
|
||||
config_file = os.path.join(args.model, "inference_cls.yaml")
|
||||
model = fd.vision.classification.PaddleClasModel(
|
||||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||
|
||||
# 预测图片分类结果
|
||||
im = cv2.imread(args.image)
|
||||
result = model.predict(im)
|
||||
result = model.predict(im, args.topk)
|
||||
print(result)
|
||||
|
Reference in New Issue
Block a user