mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 01:22:59 +08:00
Update paddleseg doc
This commit is contained in:
82
examples/vision/segmentation/paddleseg/ascend/python/README.md
Executable file
82
examples/vision/segmentation/paddleseg/ascend/python/README.md
Executable file
@@ -0,0 +1,82 @@
|
||||
English | [简体中文](README_CN.md)
|
||||
# PaddleSeg Python Deployment Example
|
||||
|
||||
Before deployment, two steps require confirmation
|
||||
|
||||
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
【Attention】For the deployment of **PP-Matting**、**PP-HumanMatting** and **ModNet**, refer to [Matting Model Deployment](../../../matting)
|
||||
|
||||
This directory provides examples that `infer.py` fast finishes the deployment of Unet on CPU/GPU and GPU accelerated by TensorRT. The script is as follows
|
||||
```bash
|
||||
# Download the deployment example code
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd FastDeploy/examples/vision/segmentation/paddleseg/python
|
||||
|
||||
# Download Unet model files and test images
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/Unet_cityscapes_without_argmax_infer.tgz
|
||||
tar -xvf Unet_cityscapes_without_argmax_infer.tgz
|
||||
wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
|
||||
|
||||
# CPU inference
|
||||
python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_demo.png --device cpu
|
||||
# GPU inference
|
||||
python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_demo.png --device gpu
|
||||
# TensorRT inference on GPU(Attention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.)
|
||||
python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_demo.png --device gpu --use_trt True
|
||||
# kunlunxin XPU inference
|
||||
python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_demo.png --device kunlunxin
|
||||
```
|
||||
|
||||
The visualized result after running is as follows
|
||||
<div align="center">
|
||||
<img src="https://user-images.githubusercontent.com/16222477/191712880-91ae128d-247a-43e0-b1e3-cafae78431e0.jpg", width=512px, height=256px />
|
||||
</div>
|
||||
|
||||
## PaddleSegModel Python Interface
|
||||
|
||||
```python
|
||||
fd.vision.segmentation.PaddleSegModel(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||||
```
|
||||
|
||||
PaddleSeg model loading and initialization, among which model_file, params_file, and config_file are the Paddle inference files exported from the training model. Refer to [Model Export](https://github.com/PaddlePaddle/PaddleSeg/blob/develop/docs/model_export_cn.md) for more information
|
||||
|
||||
**Parameter**
|
||||
|
||||
> * **model_file**(str): Model file path
|
||||
> * **params_file**(str): Parameter file path
|
||||
> * **config_file**(str): Inference deployment configuration file
|
||||
> * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
|
||||
> * **model_format**(ModelFormat): Model format. Paddle format by default
|
||||
|
||||
### predict function
|
||||
|
||||
> ```python
|
||||
> PaddleSegModel.predict(input_image)
|
||||
> ```
|
||||
>
|
||||
> Model prediction interface. Input images and output detection results.
|
||||
>
|
||||
> **Parameter**
|
||||
>
|
||||
> > * **input_image**(np.ndarray): Input data in HWC or BGR format
|
||||
|
||||
> **Return**
|
||||
>
|
||||
> > Return `fastdeploy.vision.SegmentationResult` structure. Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for the description of the structure.
|
||||
|
||||
### Class Member Variable
|
||||
#### Pre-processing Parameter
|
||||
Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results
|
||||
|
||||
> > * **is_vertical_screen**(bool): For PP-HumanSeg models, the input image is portrait with height greater than width by setting this parameter to `true`
|
||||
#### Post-processing Parameter
|
||||
> > * **apply_softmax**(bool): The `apply_softmax` parameter is not specified when the model is exported. Set this parameter to `true` to normalize the probability result (score_map) of the predicted output segmentation label (label_map) in softmax
|
||||
|
||||
## Other Documents
|
||||
|
||||
- [PaddleSeg Model Description](..)
|
||||
- [PaddleSeg C++ Deployment](../cpp)
|
||||
- [Model Prediction Results](../../../../../docs/api/vision_results/)
|
||||
- [How to switch the model inference backend engine](../../../../../docs/cn/faq/how_to_change_backend.md)
|
@@ -0,0 +1,79 @@
|
||||
[English](README.md) | 简体中文
|
||||
# PaddleSeg Python部署示例
|
||||
|
||||
本目录下提供`infer.py`快速完成PP-LiteSeg在华为昇腾上部署的示例。
|
||||
|
||||
在部署前,需自行编译基于华为昇腾NPU的FastDeploy python wheel包,参考文档[华为昇腾NPU部署环境编译](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/huawei_ascend.md),编译python wheel包并安装
|
||||
|
||||
>>**注意** **PP-Matting**、**PP-HumanMatting**的模型,请从[Matting模型部署](../../../matting)下载
|
||||
|
||||
|
||||
```bash
|
||||
#下载部署示例代码
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd FastDeploy/examples/vision/segmentation/paddleseg/ascend/cpp
|
||||
|
||||
# 下载PP-LiteSeg模型文件和测试图片
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer.tgz
|
||||
tar -xvf PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer.tgz
|
||||
wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
|
||||
|
||||
# 华为昇腾推理
|
||||
python infer.py --model PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer --image cityscapes_demo.png
|
||||
```
|
||||
|
||||
运行完成可视化结果如下图所示
|
||||
<div align="center">
|
||||
<img src="https://user-images.githubusercontent.com/16222477/191712880-91ae128d-247a-43e0-b1e3-cafae78431e0.jpg", width=512px, height=256px />
|
||||
</div>
|
||||
|
||||
## PaddleSegModel Python接口
|
||||
|
||||
```python
|
||||
fd.vision.segmentation.PaddleSegModel(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
||||
```
|
||||
|
||||
PaddleSeg模型加载和初始化,其中model_file, params_file以及config_file为训练模型导出的Paddle inference文件,具体请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleSeg/blob/develop/docs/model_export_cn.md)
|
||||
|
||||
**参数**
|
||||
|
||||
> * **model_file**(str): 模型文件路径
|
||||
> * **params_file**(str): 参数文件路径
|
||||
> * **config_file**(str): 推理部署配置文件
|
||||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||||
> * **model_format**(ModelFormat): 模型格式,默认为Paddle格式
|
||||
|
||||
### predict函数
|
||||
|
||||
> ```python
|
||||
> PaddleSegModel.predict(input_image)
|
||||
> ```
|
||||
>
|
||||
> 模型预测结口,输入图像直接输出检测结果。
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
> > * **input_image**(np.ndarray): 输入数据,注意需为HWC,BGR格式
|
||||
|
||||
> **返回**
|
||||
>
|
||||
> > 返回`fastdeploy.vision.SegmentationResult`结构体,SegmentationResult结构体说明参考[SegmentationResult结构体介绍](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/api/vision_results/segmentation_result_CN.md)
|
||||
|
||||
### 类成员属性
|
||||
#### 预处理参数
|
||||
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
|
||||
|
||||
> > * **is_vertical_screen**(bool): PP-HumanSeg系列模型通过设置此参数为`true`表明输入图片是竖屏,即height大于width的图片
|
||||
|
||||
#### 后处理参数
|
||||
> > * **apply_softmax**(bool): 当模型导出时,并未指定`apply_softmax`参数,可通过此设置此参数为`true`,将预测的输出分割标签(label_map)对应的概率结果(score_map)做softmax归一化处理
|
||||
|
||||
## 快速链接
|
||||
|
||||
- [PaddleSeg 模型介绍](..)
|
||||
- [PaddleSeg C++部署](../cpp)
|
||||
|
||||
## 常见问题
|
||||
- [如何将模型预测结果SegmentationResult转为numpy格式](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/api/vision_results/segmentation_result_CN.md)
|
||||
- [如何切换模型推理后端引擎](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/how_to_change_backend.md)
|
||||
- [PaddleSeg python API文档](https://www.paddlepaddle.org.cn/fastdeploy-api-doc/python/html/semantic_segmentation.html)
|
34
examples/vision/segmentation/paddleseg/ascend/python/infer.py
Executable file
34
examples/vision/segmentation/paddleseg/ascend/python/infer.py
Executable file
@@ -0,0 +1,34 @@
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model", required=True, help="Path of PaddleSeg model.")
|
||||
parser.add_argument(
|
||||
"--image", type=str, required=True, help="Path of test image file.")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
runtime_option = fd.RuntimeOption()
|
||||
runtime_option.use_ascend()
|
||||
|
||||
# 配置runtime,加载模型
|
||||
model_file = os.path.join(args.model, "model.pdmodel")
|
||||
params_file = os.path.join(args.model, "model.pdiparams")
|
||||
config_file = os.path.join(args.model, "deploy.yaml")
|
||||
model = fd.vision.segmentation.PaddleSegModel(
|
||||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||
|
||||
# 预测图片分割结果
|
||||
im = cv2.imread(args.image)
|
||||
result = model.predict(im)
|
||||
print(result)
|
||||
|
||||
# 可视化结果
|
||||
vis_im = fd.vision.vis_segmentation(im, result, weight=0.5)
|
||||
cv2.imwrite("vis_img.png", vis_im)
|
Reference in New Issue
Block a user