[Doc]Add English version of documents in examples (#1070)

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update README_EN.md

* Rename README_EN.md to README_CN.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update README_EN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update README_EN.md

* Rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update README.md

* Update README.md

* Update README_CN.md

* Update README.md

* Update README_CN.md

* Update README_CN.md

* Update README.md

* Update README_CN.md

* Update README.md

* Update README_CN.md

* Update README.md

* Update README_CN.md

* Update README.md

* Update README_CN.md

* Update README_CN.md

* Update README.md

* Update README.md

* Update README_CN.md

* Update README.md

* Update README_CN.md

* Update README_CN.md

* Update README.md

* Update README_CN.md

* Update README.md

* Update README_CN.md

* Update README.md

* Update README_CN.md

* Update README.md

* Update README_CN.md

* Update README.md

* Update README.md

* Update and rename README_CN.md to README_EN.md

* Update README_CN.md

* Update README.md

* Update README_CN.md

* Update README.md

* Update README.md

* Update README_CN.md

* Update README.md

* Update README_CN.md

* Update README.md

* Update README_CN.md

* Update README.md

* Update README_CN.md

* Update README_CN.md

* Update README.md

* Update README_CN.md

* Update README.md

* Update and rename README_EN.md to README_CN.md

* Update README.md

* Update README_CN.md

* Update README.md

* Update README_CN.md

* Update README.md

* Update README_CN.md

* Update README_CN.md

* Update README.md

* Update export.md

* Create export_cn.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md
This commit is contained in:
Hu Chuqi
2023-01-06 09:34:28 +08:00
committed by GitHub
parent c9a086ec38
commit bb96a6fe8f
313 changed files with 14807 additions and 4810 deletions

View File

@@ -1,47 +1,49 @@
# PaddleSeg 模型部署
English | [简体中文](README_CN.md)
# PaddleSeg Model Deployment
## 模型版本说明
## Model Description
- [PaddleSeg develop](https://github.com/PaddlePaddle/PaddleSeg/tree/develop)
目前FastDeploy支持如下模型的部署
FastDeploy currently supports the deployment of the following models
- [U-Net系列模型](https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.6/configs/unet/README.md)
- [PP-LiteSeg系列模型](https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.6/configs/pp_liteseg/README.md)
- [PP-HumanSeg系列模型](https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.6/contrib/PP-HumanSeg/README.md)
- [FCN系列模型](https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.6/configs/fcn/README.md)
- [DeepLabV3系列模型](https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.6/configs/deeplabv3/README.md)
- [U-Net models](https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.6/configs/unet/README.md)
- [PP-LiteSeg models](https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.6/configs/pp_liteseg/README.md)
- [PP-HumanSeg models](https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.6/contrib/PP-HumanSeg/README.md)
- [FCN models](https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.6/configs/fcn/README.md)
- [DeepLabV3 models](https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.6/configs/deeplabv3/README.md)
注意】如你部署的为**PP-Matting**、**PP-HumanMatting**以及**ModNet**请参考[Matting模型部署](../../matting)
Attention】For **PP-Matting**、**PP-HumanMatting** and **ModNet** deployment, please refer to [Matting Model Deployment](../../matting)
## 准备PaddleSeg部署模型
## Prepare PaddleSeg Deployment Model
PaddleSeg模型导出请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleSeg/blob/develop/docs/model_export_cn.md)
For the export of the PaddleSeg model, refer to [Model Export](https://github.com/PaddlePaddle/PaddleSeg/blob/develop/docs/model_export_cn.md) for more information
**注意**
- PaddleSeg导出的模型包含`model.pdmodel``model.pdiparams``deploy.yaml`三个文件,FastDeploy会从yaml文件中获取模型在推理时需要的预处理信息
**Attention**
- The exported PaddleSeg model contains three files, including `model.pdmodel``model.pdiparams` and `deploy.yaml`. FastDeploy will get the pre-processing information for inference from yaml files.
## 下载预训练模型
## Download Pre-trained Model
为了方便开发者的测试下面提供了PaddleSeg导出的部分模型
- without-argmax导出方式为:**不指定**`--input_shape`**指定**`--output_op none`
- with-argmax导出方式为:**不指定**`--input_shape`**指定**`--output_op argmax`
For developers' testing, part of the PaddleSeg exported models are provided below.
- without-argmax export mode: **Not specified**`--input_shape`**specified**`--output_op none`
- with-argmax export mode**Not specified**`--input_shape`**specified**`--output_op argmax`
开发者可直接下载使用。
Developers can download directly.
| 模型 | 参数文件大小 |输入Shape | mIoU | mIoU (flip) | mIoU (ms+flip) |
| Model | Parameter Size | Input Shape | mIoU | mIoU (flip) | mIoU (ms+flip) |
|:---------------------------------------------------------------- |:----- |:----- | :----- | :----- | :----- |
| [Unet-cityscapes-with-argmax](https://bj.bcebos.com/paddlehub/fastdeploy/Unet_cityscapes_with_argmax_infer.tgz) \| [Unet-cityscapes-without-argmax](https://bj.bcebos.com/paddlehub/fastdeploy/Unet_cityscapes_without_argmax_infer.tgz) | 52MB | 1024x512 | 65.00% | 66.02% | 66.89% |
| [PP-LiteSeg-B(STDC2)-cityscapes-with-argmax](https://bj.bcebos.com/paddlehub/fastdeploy/PP_LiteSeg_B_STDC2_cityscapes_with_argmax_infer.tgz) \| [PP-LiteSeg-B(STDC2)-cityscapes-without-argmax](https://bj.bcebos.com/paddlehub/fastdeploy/PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer.tgz) | 31MB | 1024x512 | 79.04% | 79.52% | 79.85% |
|[PP-HumanSegV1-Lite-with-argmax(通用人像分割模型)](https://bj.bcebos.com/paddlehub/fastdeploy/Portrait_PP_HumanSegV1_Lite_with_argmax_infer.tgz) \| [PP-HumanSegV1-Lite-without-argmax(通用人像分割模型)](https://bj.bcebos.com/paddlehub/fastdeploy/PP_HumanSegV1_Lite_infer.tgz) | 543KB | 192x192 | 86.2% | - | - |
|[PP-HumanSegV2-Lite-with-argmax(通用人像分割模型)](https://bj.bcebos.com/paddlehub/fastdeploy/PP_HumanSegV2_Lite_192x192_with_argmax_infer.tgz) \| [PP-HumanSegV2-Lite-without-argmax(通用人像分割模型)](https://bj.bcebos.com/paddlehub/fastdeploy/PP_HumanSegV2_Lite_192x192_infer.tgz) | 12MB | 192x192 | 92.52% | - | - |
| [PP-HumanSegV2-Mobile-with-argmax(通用人像分割模型)](https://bj.bcebos.com/paddlehub/fastdeploy/PP_HumanSegV2_Mobile_192x192_with_argmax_infer.tgz) \| [PP-HumanSegV2-Mobile-without-argmax(通用人像分割模型)](https://bj.bcebos.com/paddlehub/fastdeploy/PP_HumanSegV2_Mobile_192x192_infer.tgz) | 29MB | 192x192 | 93.13% | - | - |
|[PP-HumanSegV1-Server-with-argmax(通用人像分割模型)](https://bj.bcebos.com/paddlehub/fastdeploy/PP_HumanSegV1_Server_with_argmax_infer.tgz) \| [PP-HumanSegV1-Server-without-argmax(通用人像分割模型)](https://bj.bcebos.com/paddlehub/fastdeploy/PP_HumanSegV1_Server_infer.tgz) | 103MB | 512x512 | 96.47% | - | - |
| [Portait-PP-HumanSegV2-Lite-with-argmax(肖像分割模型)](https://bj.bcebos.com/paddlehub/fastdeploy/Portrait_PP_HumanSegV2_Lite_256x144_with_argmax_infer.tgz) \| [Portait-PP-HumanSegV2-Lite-without-argmax(肖像分割模型)](https://bj.bcebos.com/paddlehub/fastdeploy/Portrait_PP_HumanSegV2_Lite_256x144_infer.tgz) | 3.6M | 256x144 | 96.63% | - | - |
| [FCN-HRNet-W18-cityscapes-with-argmax](https://bj.bcebos.com/paddlehub/fastdeploy/FCN_HRNet_W18_cityscapes_with_argmax_infer.tgz) \| [FCN-HRNet-W18-cityscapes-without-argmax](https://bj.bcebos.com/paddlehub/fastdeploy/FCN_HRNet_W18_cityscapes_without_argmax_infer.tgz)(暂时不支持ONNXRuntime的GPU推理) | 37MB | 1024x512 | 78.97% | 79.49% | 79.74% |
|[PP-HumanSegV1-Lite-with-argmax(General Portrait Segmentation Model)](https://bj.bcebos.com/paddlehub/fastdeploy/Portrait_PP_HumanSegV1_Lite_with_argmax_infer.tgz) \| [PP-HumanSegV1-Lite-without-argmax(General Portrait Segmentation Model)](https://bj.bcebos.com/paddlehub/fastdeploy/PP_HumanSegV1_Lite_infer.tgz) | 543KB | 192x192 | 86.2% | - | - |
|[PP-HumanSegV2-Lite-with-argmax(General Portrait Segmentation Model)](https://bj.bcebos.com/paddlehub/fastdeploy/PP_HumanSegV2_Lite_192x192_with_argmax_infer.tgz) \| [PP-HumanSegV2-Lite-without-argmax(General Portrait Segmentation Model)](https://bj.bcebos.com/paddlehub/fastdeploy/PP_HumanSegV2_Lite_192x192_infer.tgz) | 12MB | 192x192 | 92.52% | - | - |
| [PP-HumanSegV2-Mobile-with-argmax(General Portrait Segmentation Model)](https://bj.bcebos.com/paddlehub/fastdeploy/PP_HumanSegV2_Mobile_192x192_with_argmax_infer.tgz) \| [PP-HumanSegV2-Mobile-without-argmax(General Portrait Segmentation Model)](https://bj.bcebos.com/paddlehub/fastdeploy/PP_HumanSegV2_Mobile_192x192_infer.tgz) | 29MB | 192x192 | 93.13% | - | - |
|[PP-HumanSegV1-Server-with-argmax(General Portrait Segmentation Model)](https://bj.bcebos.com/paddlehub/fastdeploy/PP_HumanSegV1_Server_with_argmax_infer.tgz) \| [PP-HumanSegV1-Server-without-argmax(General Portrait Segmentation Model)](https://bj.bcebos.com/paddlehub/fastdeploy/PP_HumanSegV1_Server_infer.tgz) | 103MB | 512x512 | 96.47% | - | - |
| [Portait-PP-HumanSegV2-Lite-with-argmax(Portrait Segmentation Model)](https://bj.bcebos.com/paddlehub/fastdeploy/Portrait_PP_HumanSegV2_Lite_256x144_with_argmax_infer.tgz) \| [Portait-PP-HumanSegV2-Lite-without-argmax(Portrait Segmentation Model)](https://bj.bcebos.com/paddlehub/fastdeploy/Portrait_PP_HumanSegV2_Lite_256x144_infer.tgz) | 3.6M | 256x144 | 96.63% | - | - |
| [FCN-HRNet-W18-cityscapes-with-argmax](https://bj.bcebos.com/paddlehub/fastdeploy/FCN_HRNet_W18_cityscapes_with_argmax_infer.tgz) \| [FCN-HRNet-W18-cityscapes-without-argmax](https://bj.bcebos.com/paddlehub/fastdeploy/FCN_HRNet_W18_cityscapes_without_argmax_infer.tgz)(GPU inference for ONNXRuntime is not supported now) | 37MB | 1024x512 | 78.97% | 79.49% | 79.74% |
| [Deeplabv3-ResNet101-OS8-cityscapes-with-argmax](https://bj.bcebos.com/paddlehub/fastdeploy/Deeplabv3_ResNet101_OS8_cityscapes_with_argmax_infer.tgz) \| [Deeplabv3-ResNet101-OS8-cityscapes-without-argmax](https://bj.bcebos.com/paddlehub/fastdeploy/Deeplabv3_ResNet101_OS8_cityscapes_without_argmax_infer.tgz) | 150MB | 1024x512 | 79.90% | 80.22% | 80.47% |
## 详细部署文档
## Detailed Deployment Tutorials
- [Python部署](python)
- [C++部署](cpp)
- [Python Deployment](python)
- [C++ Deployment](cpp)

View File

@@ -0,0 +1,34 @@
[English](README.md) | 简体中文
# 视觉模型部署
本目录下提供了各类视觉模型的部署,主要涵盖以下任务类型
| 任务类型 | 说明 | 预测结果结构体 |
|:-------------- |:----------------------------------- |:-------------------------------------------------------------------------------- |
| Detection | 目标检测,输入图像,检测图像中物体位置,并返回检测框坐标及类别和置信度 | [DetectionResult](../../docs/api/vision_results/detection_result.md) |
| Segmentation | 语义分割,输入图像,给出图像中每个像素的分类及置信度 | [SegmentationResult](../../docs/api/vision_results/segmentation_result.md) |
| Classification | 图像分类,输入图像,给出图像的分类结果和置信度 | [ClassifyResult](../../docs/api/vision_results/classification_result.md) |
| FaceDetection | 人脸检测,输入图像,检测图像中人脸位置,并返回检测框坐标及人脸关键点 | [FaceDetectionResult](../../docs/api/vision_results/face_detection_result.md) |
| FaceAlignment | 人脸对齐(人脸关键点检测),输入图像,返回人脸关键点 | [FaceAlignmentResult](../../docs/api/vision_results/face_alignment_result.md) |
| KeypointDetection | 关键点检测,输入图像,返回图像中人物行为的各个关键点坐标和置信度 | [KeyPointDetectionResult](../../docs/api/vision_results/keypointdetection_result.md) |
| FaceRecognition | 人脸识别输入图像返回可用于相似度计算的人脸特征的embedding | [FaceRecognitionResult](../../docs/api/vision_results/face_recognition_result.md) |
| Matting | 抠图输入图像返回图片的前景每个像素点的Alpha值 | [MattingResult](../../docs/api/vision_results/matting_result.md) |
| OCR | 文本框检测,分类,文本框内容识别,输入图像,返回文本框坐标,文本框的方向类别以及框内的文本内容 | [OCRResult](../../docs/api/vision_results/ocr_result.md) |
| MOT | 多目标跟踪输入图像检测图像中物体位置并返回检测框坐标对象id及类别置信度 | [MOTResult](../../docs/api/vision_results/mot_result.md) |
| HeadPose | 头部姿态估计,返回头部欧拉角 | [HeadPoseResult](../../docs/api/vision_results/headpose_result.md) |
## FastDeploy API设计
视觉模型具有较有统一任务范式在设计API时包括C++/PythonFastDeploy将视觉模型的部署拆分为四个步骤
- 模型加载
- 图像预处理
- 模型推理
- 推理结果后处理
FastDeploy针对飞桨的视觉套件以及外部热门模型提供端到端的部署服务用户只需准备模型按以下步骤即可完成整个模型的部署
- 加载模型
- 调用`predict`接口
FastDeploy在各视觉模型部署时也支持一键切换后端推理引擎详情参阅[如何切换模型推理引擎](../../docs/cn/faq/how_to_change_backend.md)。

View File

@@ -1,11 +1,12 @@
# PP-LiteSeg 量化模型在 A311D 上的部署
目前 FastDeploy 已经支持基于 Paddle Lite 部署 PP-LiteSeg 量化模型到 A311D 上。
English | [简体中文](README_CN.md)
# Deployment of PP-LiteSeg Quantification Model on A311D
Now FastDeploy allows deploying PP-LiteSeg quantization model to A311D based on Paddle Lite.
模型的量化和量化模型的下载请参考:[模型量化](../quantize/README.md)
For model quantization and download of quantized models, refer to [Model Quantization](../quantize/README.md)
## 详细部署文档
## Detailed Deployment Tutorials
在 A311D 上只支持 C++ 的部署。
Only C++ deployment is supported on A311D.
- [C++部署](cpp)
- [C++ deployment](cpp)

View File

@@ -0,0 +1,12 @@
[English](README.md) | 简体中文
# PP-LiteSeg 量化模型在 A311D 上的部署
目前 FastDeploy 已经支持基于 Paddle Lite 部署 PP-LiteSeg 量化模型到 A311D 上。
模型的量化和量化模型的下载请参考:[模型量化](../quantize/README.md)
## 详细部署文档
在 A311D 上只支持 C++ 的部署。
- [C++部署](cpp)

View File

@@ -1,57 +1,53 @@
# PaddleSeg C++部署示例
English | [简体中文](README_CN.md)
# PaddleSeg C++ Deployment Example
本目录下提供`infer.cc`快速完成Unet在CPU/GPU以及GPU上通过TensorRT加速部署的示例。
This directory provides examples that `infer.cc` fast finishes the deployment of Unet on CPU/GPU and GPU accelerated by TensorRT.
在部署前,需确认以下两个步骤
Before deployment, two steps require confirmation
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境下载预编译部署库和samples代码参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
注意】如你部署的为**PP-Matting**、**PP-HumanMatting**以及**ModNet**请参考[Matting模型部署](../../../matting)
Attention】For the deployment of **PP-Matting**、**PP-HumanMatting** and **ModNet**, refer to [Matting Model Deployment](../../../matting)
以Linux上推理为例在本目录执行如下命令即可完成编译测试支持此模型需保证FastDeploy版本1.0.0以上(x.x.x>=1.0.0)
Taking the inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 1.0.0 or above (x.x.x>=1.0.0) is required to support this model.
```bash
mkdir build
cd build
# 下载FastDeploy预编译库用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
# Download the FastDeploy precompiled library. Users can choose your appropriate version in the `FastDeploy Precompiled Library` mentioned above
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j
# 下载Unet模型文件和测试图片
# Download Unet model files and test images
wget https://bj.bcebos.com/paddlehub/fastdeploy/Unet_cityscapes_without_argmax_infer.tgz
tar -xvf Unet_cityscapes_without_argmax_infer.tgz
wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
# CPU推理
# CPU inference
./infer_demo Unet_cityscapes_without_argmax_infer cityscapes_demo.png 0
# GPU推理
# GPU inference
./infer_demo Unet_cityscapes_without_argmax_infer cityscapes_demo.png 1
# GPU上TensorRT推理
# TensorRT inference on GPU
./infer_demo Unet_cityscapes_without_argmax_infer cityscapes_demo.png 2
# 昆仑芯XPU推理
# kunlunxin XPU inference
./infer_demo Unet_cityscapes_without_argmax_infer cityscapes_demo.png 3
# 华为昇腾推理
./infer_demo Unet_cityscapes_without_argmax_infer cityscapes_demo.png 4
```
运行完成可视化结果如下图所示
The visualized result after running is as follows
<div align="center">
<img src="https://user-images.githubusercontent.com/16222477/191712880-91ae128d-247a-43e0-b1e3-cafae78431e0.jpg", width=512px, height=256px />
</div>
以上命令只适用于LinuxMacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
The above command works for Linux or MacOS. For SDK use-pattern in Windows, refer to:
- [How to use FastDeploy C++ SDK in Windows](../../../../../docs/cn/faq/use_sdk_on_windows.md)
如果用户使用华为昇腾NPU部署, 请参考以下方式在部署前初始化部署环境:
- [如何使用华为昇腾NPU部署](../../../../../docs/cn/faq/use_sdk_on_ascend.md)
## PaddleSeg C++ Interface
## PaddleSeg C++接口
### PaddleSeg类
### PaddleSeg Class
```c++
fastdeploy::vision::segmentation::PaddleSegModel(
@@ -62,39 +58,39 @@ fastdeploy::vision::segmentation::PaddleSegModel(
const ModelFormat& model_format = ModelFormat::PADDLE)
```
PaddleSegModel模型加载和初始化其中model_file为导出的Paddle模型格式。
PaddleSegModel model loading and initialization, among which model_file is the exported Paddle model format.
**参数**
**Parameter**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径
> * **config_file**(str): 推理部署配置文件
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为Paddle格式
> * **model_file**(str): Model file path
> * **params_file**(str): Parameter file path
> * **config_file**(str): Inference deployment configuration file
> * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
> * **model_format**(ModelFormat): Model format. Paddle format by default
#### Predict函数
#### Predict Function
> ```c++
> PaddleSegModel::Predict(cv::Mat* im, DetectionResult* result)
> ```
>
> 模型预测接口,输入图像直接输出检测结果。
> Model prediction interface. Input images and output detection results.
>
> **参数**
> **Parameter**
>
> > * **im**: 输入图像注意需为HWCBGR格式
> > * **result**: 分割结果,包括分割预测的标签以及标签对应的概率值, SegmentationResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
> > * **im**: Input images in HWC or BGR format
> > * **result**: The segmentation result, including the predicted label of the segmentation and the corresponding probability of the label. Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for the description of SegmentationResult
### 类成员属性
#### 预处理参数
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
### Class Member Variable
#### Pre-processing Parameter
Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results
> > * **is_vertical_screen**(bool): PP-HumanSeg系列模型通过设置此参数为`true`表明输入图片是竖屏即height大于width的图片
> > * **is_vertical_screen**(bool): For PP-HumanSeg models, the input image is portrait, height greater than a width, by setting this parameter to`true`
#### 后处理参数
> > * **apply_softmax**(bool): 当模型导出时,并未指定`apply_softmax`参数,可通过此设置此参数为`true`将预测的输出分割标签label_map对应的概率结果(score_map)做softmax归一化处理
#### Post-processing Parameter
> > * **apply_softmax**(bool): The `apply_softmax` parameter is not specified when the model is exported. Set this parameter to `true` to normalize the probability result (score_map) of the predicted output segmentation label (label_map)
- [模型介绍](../../)
- [Python部署](../python)
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
- [Model Description](../../)
- [Python Deployment](../python)
- [Vision Model Prediction Results](../../../../../docs/api/vision_results/)
- [How to switch the model inference backend engine](../../../../../docs/cn/faq/how_to_change_backend.md)

View File

@@ -0,0 +1,101 @@
[English](README.md) | 简体中文
# PaddleSeg C++部署示例
本目录下提供`infer.cc`快速完成Unet在CPU/GPU以及GPU上通过TensorRT加速部署的示例。
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境下载预编译部署库和samples代码参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
【注意】如你部署的为**PP-Matting**、**PP-HumanMatting**以及**ModNet**请参考[Matting模型部署](../../../matting)
以Linux上推理为例在本目录执行如下命令即可完成编译测试支持此模型需保证FastDeploy版本1.0.0以上(x.x.x>=1.0.0)
```bash
mkdir build
cd build
# 下载FastDeploy预编译库用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j
# 下载Unet模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/Unet_cityscapes_without_argmax_infer.tgz
tar -xvf Unet_cityscapes_without_argmax_infer.tgz
wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
# CPU推理
./infer_demo Unet_cityscapes_without_argmax_infer cityscapes_demo.png 0
# GPU推理
./infer_demo Unet_cityscapes_without_argmax_infer cityscapes_demo.png 1
# GPU上TensorRT推理
./infer_demo Unet_cityscapes_without_argmax_infer cityscapes_demo.png 2
# 昆仑芯XPU推理
./infer_demo Unet_cityscapes_without_argmax_infer cityscapes_demo.png 3
# 华为昇腾推理
./infer_demo Unet_cityscapes_without_argmax_infer cityscapes_demo.png 4
```
运行完成可视化结果如下图所示
<div align="center">
<img src="https://user-images.githubusercontent.com/16222477/191712880-91ae128d-247a-43e0-b1e3-cafae78431e0.jpg", width=512px, height=256px />
</div>
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
如果用户使用华为昇腾NPU部署, 请参考以下方式在部署前初始化部署环境:
- [如何使用华为昇腾NPU部署](../../../../../docs/cn/faq/use_sdk_on_ascend.md)
## PaddleSeg C++接口
### PaddleSeg类
```c++
fastdeploy::vision::segmentation::PaddleSegModel(
const string& model_file,
const string& params_file = "",
const string& config_file,
const RuntimeOption& runtime_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE)
```
PaddleSegModel模型加载和初始化其中model_file为导出的Paddle模型格式。
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径
> * **config_file**(str): 推理部署配置文件
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为Paddle格式
#### Predict函数
> ```c++
> PaddleSegModel::Predict(cv::Mat* im, DetectionResult* result)
> ```
>
> 模型预测接口,输入图像直接输出检测结果。
>
> **参数**
>
> > * **im**: 输入图像注意需为HWCBGR格式
> > * **result**: 分割结果,包括分割预测的标签以及标签对应的概率值, SegmentationResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
### 类成员属性
#### 预处理参数
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
> > * **is_vertical_screen**(bool): PP-HumanSeg系列模型通过设置此参数为`true`表明输入图片是竖屏即height大于width的图片
#### 后处理参数
> > * **apply_softmax**(bool): 当模型导出时,并未指定`apply_softmax`参数,可通过此设置此参数为`true`将预测的输出分割标签label_map对应的概率结果(score_map)做softmax归一化处理
- [模型介绍](../../)
- [Python部署](../python)
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)

View File

@@ -1,85 +1,82 @@
# PaddleSeg Python部署示例
English | [简体中文](README_CN.md)
# PaddleSeg Python Deployment Example
在部署前,需确认以下两个步骤
Before deployment, two steps require confirmation
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
注意】如你部署的为**PP-Matting**、**PP-HumanMatting**以及**ModNet**请参考[Matting模型部署](../../../matting)
本目录下提供`infer.py`快速完成Unet在CPU/GPU以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
Attention】For the deployment of **PP-Matting**、**PP-HumanMatting** and **ModNet**, refer to [Matting Model Deployment](../../../matting)
This directory provides examples that `infer.py` fast finishes the deployment of Unet on CPU/GPU and GPU accelerated by TensorRT. The script is as follows
```bash
#下载部署示例代码
# Download the deployment example code
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/segmentation/paddleseg/python
# 下载Unet模型文件和测试图片
# Download Unet model files and test images
wget https://bj.bcebos.com/paddlehub/fastdeploy/Unet_cityscapes_without_argmax_infer.tgz
tar -xvf Unet_cityscapes_without_argmax_infer.tgz
wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
# CPU推理
# CPU inference
python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_demo.png --device cpu
# GPU推理
# GPU inference
python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_demo.png --device gpu
# GPU上使用TensorRT推理 注意TensorRT推理第一次运行有序列化模型的操作有一定耗时需要耐心等待
# TensorRT inference on GPUAttention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.
python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_demo.png --device gpu --use_trt True
# 昆仑芯XPU推理
# kunlunxin XPU inference
python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_demo.png --device kunlunxin
# 华为昇腾推理
python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_demo.png --device ascend
```
运行完成可视化结果如下图所示
The visualized result after running is as follows
<div align="center">
<img src="https://user-images.githubusercontent.com/16222477/191712880-91ae128d-247a-43e0-b1e3-cafae78431e0.jpg", width=512px, height=256px />
</div>
## PaddleSegModel Python接口
## PaddleSegModel Python Interface
```python
fd.vision.segmentation.PaddleSegModel(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
```
PaddleSeg模型加载和初始化,其中model_file, params_file以及config_file为训练模型导出的Paddle inference文件,具体请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.6/docs/model_export_cn.md)
PaddleSeg model loading and initialization, among which model_file, params_file, and config_file are the Paddle inference files exported from the training model. Refer to [Model Export](https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.6/docs/model_export_cn.md) for more information
**参数**
**Parameter**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径
> * **config_file**(str): 推理部署配置文件
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为Paddle格式
> * **model_file**(str): Model file path
> * **params_file**(str): Parameter file path
> * **config_file**(str): Inference deployment configuration file
> * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
> * **model_format**(ModelFormat): Model format. Paddle format by default
### predict函数
### predict function
> ```python
> PaddleSegModel.predict(input_image)
> ```
>
> 模型预测结口,输入图像直接输出检测结果。
> Model prediction interface. Input images and output detection results.
>
> **参数**
> **Parameter**
>
> > * **input_image**(np.ndarray): 输入数据注意需为HWCBGR格式
> > * **input_image**(np.ndarray): Input data in HWC or BGR format
> **返回**
> **Return**
>
> > 返回`fastdeploy.vision.SegmentationResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
> > Return `fastdeploy.vision.SegmentationResult` structure. Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for the description of the structure.
### 类成员属性
#### 预处理参数
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
### Class Member Variable
#### Pre-processing Parameter
Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results
> > * **is_vertical_screen**(bool): PP-HumanSeg系列模型通过设置此参数为`true`表明输入图片是竖屏即height大于width的图片
> > * **is_vertical_screen**(bool): For PP-HumanSeg models, the input image is portrait with height greater than width by setting this parameter to `true`
#### Post-processing Parameter
> > * **apply_softmax**(bool): The `apply_softmax` parameter is not specified when the model is exported. Set this parameter to `true` to normalize the probability result (score_map) of the predicted output segmentation label (label_map) in softmax
#### 后处理参数
> > * **apply_softmax**(bool): 当模型导出时,并未指定`apply_softmax`参数,可通过此设置此参数为`true`将预测的输出分割标签label_map对应的概率结果(score_map)做softmax归一化处理
## Other Documents
## 其它文档
- [PaddleSeg 模型介绍](..)
- [PaddleSeg C++部署](../cpp)
- [模型预测结果说明](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
- [PaddleSeg Model Description](..)
- [PaddleSeg C++ Deployment](../cpp)
- [Model Prediction Results](../../../../../docs/api/vision_results/)
- [How to switch the model inference backend engine](../../../../../docs/cn/faq/how_to_change_backend.md)

View File

@@ -0,0 +1,86 @@
[English](README.md) | 简体中文
# PaddleSeg Python部署示例
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. FastDeploy Python whl包安装参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
【注意】如你部署的为**PP-Matting**、**PP-HumanMatting**以及**ModNet**请参考[Matting模型部署](../../../matting)
本目录下提供`infer.py`快速完成Unet在CPU/GPU以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
```bash
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/segmentation/paddleseg/python
# 下载Unet模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/Unet_cityscapes_without_argmax_infer.tgz
tar -xvf Unet_cityscapes_without_argmax_infer.tgz
wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
# CPU推理
python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_demo.png --device cpu
# GPU推理
python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_demo.png --device gpu
# GPU上使用TensorRT推理 注意TensorRT推理第一次运行有序列化模型的操作有一定耗时需要耐心等待
python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_demo.png --device gpu --use_trt True
# 昆仑芯XPU推理
python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_demo.png --device kunlunxin
# 华为昇腾推理
python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_demo.png --device ascend
```
运行完成可视化结果如下图所示
<div align="center">
<img src="https://user-images.githubusercontent.com/16222477/191712880-91ae128d-247a-43e0-b1e3-cafae78431e0.jpg", width=512px, height=256px />
</div>
## PaddleSegModel Python接口
```python
fd.vision.segmentation.PaddleSegModel(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
```
PaddleSeg模型加载和初始化其中model_file, params_file以及config_file为训练模型导出的Paddle inference文件具体请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.6/docs/model_export_cn.md)
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径
> * **config_file**(str): 推理部署配置文件
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为Paddle格式
### predict函数
> ```python
> PaddleSegModel.predict(input_image)
> ```
>
> 模型预测结口,输入图像直接输出检测结果。
>
> **参数**
>
> > * **input_image**(np.ndarray): 输入数据注意需为HWCBGR格式
> **返回**
>
> > 返回`fastdeploy.vision.SegmentationResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
### 类成员属性
#### 预处理参数
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
> > * **is_vertical_screen**(bool): PP-HumanSeg系列模型通过设置此参数为`true`表明输入图片是竖屏即height大于width的图片
#### 后处理参数
> > * **apply_softmax**(bool): 当模型导出时,并未指定`apply_softmax`参数,可通过此设置此参数为`true`将预测的输出分割标签label_map对应的概率结果(score_map)做softmax归一化处理
## 其它文档
- [PaddleSeg 模型介绍](..)
- [PaddleSeg C++部署](../cpp)
- [模型预测结果说明](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)

View File

@@ -1,11 +1,12 @@
# PP-LiteSeg 量化模型在 RV1126 上的部署
目前 FastDeploy 已经支持基于 Paddle Lite 部署 PP-LiteSeg 量化模型到 RV1126 上。
English | [简体中文](README_CN.md)
# Deployment of PP-LiteSeg Quantification Model on RV1126
Now FastDeploy allows deploying PP-LiteSeg quantization model to RV1126 based on Paddle Lite.
模型的量化和量化模型的下载请参考:[模型量化](../quantize/README.md)
For model quantization and download of quantized models, refer to [Model Quantization](../quantize/README.md)
## 详细部署文档
## Detailed Deployment Tutorials
在 RV1126 上只支持 C++ 的部署。
Only C++ deployment is supported on RV1126.
- [C++部署](cpp)
- [C++ Deployment](cpp)

View File

@@ -0,0 +1,12 @@
[English](README.md) | 简体中文
# PP-LiteSeg 量化模型在 RV1126 上的部署
目前 FastDeploy 已经支持基于 Paddle Lite 部署 PP-LiteSeg 量化模型到 RV1126 上。
模型的量化和量化模型的下载请参考:[模型量化](../quantize/README.md)
## 详细部署文档
在 RV1126 上只支持 C++ 的部署。
- [C++部署](cpp)