[Model] add pptracking model (#357)

* add override mark

* delete some

* recovery

* recovery

* add tracking

* add tracking py_bind and example

* add pptracking

* add pptracking

* iomanip head file

* add opencv_video lib

* add python libs package

Signed-off-by: ChaoII <849453582@qq.com>

* complete comments

Signed-off-by: ChaoII <849453582@qq.com>

* add jdeTracker_ member variable

Signed-off-by: ChaoII <849453582@qq.com>

* add 'FASTDEPLOY_DECL' macro

Signed-off-by: ChaoII <849453582@qq.com>

* remove kwargs params

Signed-off-by: ChaoII <849453582@qq.com>

* [Doc]update pptracking docs

* delete 'ENABLE_PADDLE_FRONTEND' switch

* add pptracking unit test

* update pptracking unit test

Signed-off-by: ChaoII <849453582@qq.com>

* modify test video file path and remove trt test

* update unit test model url

* remove 'FASTDEPLOY_DECL' macro

Signed-off-by: ChaoII <849453582@qq.com>

* fix build python packages about pptracking on win32

Signed-off-by: ChaoII <849453582@qq.com>

Signed-off-by: ChaoII <849453582@qq.com>
Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
ChaoII
2022-10-26 14:27:55 +08:00
committed by GitHub
parent da7247aa41
commit ba501fd963
38 changed files with 2959 additions and 16 deletions

View File

@@ -0,0 +1,70 @@
# PP-Tracking Python部署示例
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. FastDeploy Python whl包安装参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
本目录下提供`infer.py`快速完成PP-Tracking在CPU/GPU以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
```bash
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/tracking/pptracking/python
# 下载PP-Tracking模型文件和测试视频
wget https://bj.bcebos.com/paddlehub/fastdeploy/fairmot_hrnetv2_w18_dlafpn_30e_576x320.tgz
tar -xvf fairmot_hrnetv2_w18_dlafpn_30e_576x320.tgz
wget https://bj.bcebos.com/paddlehub/fastdeploy/person.mp4
# CPU推理
python infer.py --model fairmot_hrnetv2_w18_dlafpn_30e_576x320 --video person.mp4 --device cpu
# GPU推理
python infer.py --model fairmot_hrnetv2_w18_dlafpn_30e_576x320 --video person.mp4 --device gpu
# GPU上使用TensorRT推理 注意TensorRT推理第一次运行有序列化模型的操作有一定耗时需要耐心等待
python infer.py --model fairmot_hrnetv2_w18_dlafpn_30e_576x320 --video person.mp4 --device gpu --use_trt True
```
## PP-Tracking Python接口
```python
fd.vision.tracking.PPTracking(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
```
PP-Tracking模型加载和初始化其中model_file, params_file以及config_file为训练模型导出的Paddle inference文件具体请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.6/Matting)
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径
> * **config_file**(str): 推理部署配置文件
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为Paddle格式
### predict函数
> ```python
> PPTracking.predict(frame)
> ```
>
> 模型预测结口,输入图像直接输出检测结果。
>
> **参数**
>
> > * **frame**(np.ndarray): 输入数据注意需为HWCBGR格式,frame为视频帧如_,frame=cap.read()得到
> **返回**
>
> > 返回`fastdeploy.vision.MOTResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
### 类成员属性
#### 预处理参数
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
## 其它文档
- [PP-Tracking 模型介绍](..)
- [PP-Tracking C++部署](../cpp)
- [模型预测结果说明](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)

View File

@@ -0,0 +1,79 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import time
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model", required=True, help="Path of PaddleSeg model.")
parser.add_argument(
"--video", type=str, required=True, help="Path of test video file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu' or 'gpu'.")
parser.add_argument(
"--use_trt",
type=ast.literal_eval,
default=False,
help="Wether to use tensorrt.")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu()
if args.use_trt:
option.use_trt_backend()
return option
args = parse_arguments()
# 配置runtime加载模型
runtime_option = build_option(args)
model_file = os.path.join(args.model, "model.pdmodel")
params_file = os.path.join(args.model, "model.pdiparams")
config_file = os.path.join(args.model, "infer_cfg.yml")
model = fd.vision.tracking.PPTracking(
model_file, params_file, config_file, runtime_option=runtime_option)
# 预测图片分割结果
cap = cv2.VideoCapture(args.video)
frame_id = 0
while True:
start_time = time.time()
frame_id = frame_id+1
_, frame = cap.read()
if frame is None:
break
result = model.predict(frame)
end_time = time.time()
fps = 1.0/(end_time-start_time)
img = fd.vision.vis_mot(frame, result, fps, frame_id)
cv2.imshow("video", img)
cv2.waitKey(30)
cap.release()
cv2.destroyAllWindows()