mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-15 13:10:55 +08:00
update doc
This commit is contained in:
@@ -1,268 +0,0 @@
|
||||
# FastDeploy外部模型集成指引
|
||||
|
||||
在FastDeploy里面新增一个模型,包括增加C++/Python的部署支持。 本文以torchvision v0.12.0中的ResNet50模型为例,介绍使用FastDeploy做外部[模型集成](#modelsupport),具体包括如下3步。
|
||||
|
||||
| 步骤 | 说明 | 创建或修改的文件 |
|
||||
|:------:|:-------------------------------------:|:---------------------------------------------:|
|
||||
| [1](#step2) | 在fastdeploy/vision相应任务模块增加模型实现 | resnet.h、resnet.cc、vision.h |
|
||||
| [2](#step4) | 通过pybind完成Python接口绑定 | resnet_pybind.cc、classification_pybind.cc |
|
||||
| [3](#step5) | 实现Python相应调用接口 | resnet.py、\_\_init\_\_.py |
|
||||
|
||||
在完成上述3步之后,一个外部模型就集成好了。
|
||||
<br />
|
||||
如果您想为FastDeploy贡献代码,还需要为新增模型添加测试代码、说明文档和代码注释,可在[测试](#test)中查看。
|
||||
## 模型集成 <span id="modelsupport"></span>
|
||||
|
||||
### 模型准备 <span id="step1"></span>
|
||||
|
||||
|
||||
在集成外部模型之前,先要将训练好的模型(.pt,.pdparams 等)转换成FastDeploy支持部署的模型格式(.onnx,.pdmodel)。多数开源仓库会提供模型转换脚本,可以直接利用脚本做模型的转换。由于torchvision没有提供转换脚本,因此手动编写转换脚本,本文中将 `torchvison.models.resnet50` 转换为 `resnet50.onnx`, 参考代码如下:
|
||||
|
||||
```python
|
||||
import torch
|
||||
import torchvision.models as models
|
||||
model = models.resnet50(pretrained=True)
|
||||
batch_size = 1 #批处理大小
|
||||
input_shape = (3, 224, 224) #输入数据,改成自己的输入shape
|
||||
model.eval()
|
||||
x = torch.randn(batch_size, *input_shape) # 生成张量
|
||||
export_onnx_file = "resnet50.onnx" # 目的ONNX文件名
|
||||
torch.onnx.export(model,
|
||||
x,
|
||||
export_onnx_file,
|
||||
opset_version=12,
|
||||
input_names=["input"], # 输入名
|
||||
output_names=["output"], # 输出名
|
||||
dynamic_axes={"input":{0:"batch_size"}, # 批处理变量
|
||||
"output":{0:"batch_size"}})
|
||||
```
|
||||
执行上述脚本将会得到 `resnet50.onnx` 文件。
|
||||
|
||||
### C++部分 <span id="step2"></span>
|
||||
* 创建`resnet.h`文件
|
||||
* 创建位置
|
||||
* FastDeploy/fastdeploy/vision/classification/contrib/resnet.h (FastDeploy/C++代码存放位置/视觉模型/任务名称/外部模型/模型名.h)
|
||||
* 创建内容
|
||||
* 首先在resnet.h中创建 ResNet类并继承FastDeployModel父类,之后声明`Predict`、`Initialize`、`Preprocess`、`Postprocess`和`构造函数`,以及必要的变量,具体的代码细节请参考[resnet.h](https://github.com/PaddlePaddle/FastDeploy/pull/347/files#diff-69128489e918f305c208476ba793d8167e77de2aa7cadf5dcbac30da448bd28e)。
|
||||
|
||||
```C++
|
||||
class FASTDEPLOY_DECL ResNet : public FastDeployModel {
|
||||
public:
|
||||
ResNet(...);
|
||||
virtual bool Predict(...);
|
||||
private:
|
||||
bool Initialize();
|
||||
bool Preprocess(...);
|
||||
bool Postprocess(...);
|
||||
};
|
||||
```
|
||||
|
||||
* 创建`resnet.cc`文件
|
||||
* 创建位置
|
||||
* FastDeploy/fastdeploy/vision/classification/contrib/resnet.cc (FastDeploy/C++代码存放位置/视觉模型/任务名称/外部模型/模型名.cc)
|
||||
* 创建内容
|
||||
* 在`resnet.cc`中实现`resnet.h`中声明函数的具体逻辑,其中`PreProcess` 和 `PostProcess`需要参考源官方库的前后处理逻辑复现,ResNet每个函数具体逻辑如下,具体的代码请参考[resnet.cc](https://github.com/PaddlePaddle/FastDeploy/pull/347/files#diff-d229d702de28345253a53f2a5839fd2c638f3d32fffa6a7d04d23db9da13a871)。
|
||||
|
||||
```C++
|
||||
ResNet::ResNet(...) {
|
||||
// 构造函数逻辑
|
||||
// 1. 指定 Backend 2. 设置RuntimeOption 3. 调用Initialize()函数
|
||||
}
|
||||
bool ResNet::Initialize() {
|
||||
// 初始化逻辑
|
||||
// 1. 全局变量赋值 2. 调用InitRuntime()函数
|
||||
return true;
|
||||
}
|
||||
bool ResNet::Preprocess(Mat* mat, FDTensor* output) {
|
||||
// 前处理逻辑
|
||||
// 1. Resize 2. BGR2RGB 3. Normalize 4. HWC2CHW 5. 处理结果存入 FDTensor类中
|
||||
return true;
|
||||
}
|
||||
bool ResNet::Postprocess(FDTensor& infer_result, ClassifyResult* result, int topk) {
|
||||
//后处理逻辑
|
||||
// 1. Softmax 2. Choose topk labels 3. 结果存入 ClassifyResult类
|
||||
return true;
|
||||
}
|
||||
bool ResNet::Predict(cv::Mat* im, ClassifyResult* result, int topk) {
|
||||
Preprocess(...)
|
||||
Infer(...)
|
||||
Postprocess(...)
|
||||
return true;
|
||||
}
|
||||
```
|
||||
<span id="step3"></span>
|
||||
* 在`vision.h`文件中加入新增模型文件
|
||||
* 修改位置
|
||||
* FastDeploy/fastdeploy/vision.h
|
||||
* 修改内容
|
||||
|
||||
```C++
|
||||
#ifdef ENABLE_VISION
|
||||
#include "fastdeploy/vision/classification/contrib/resnet.h"
|
||||
#endif
|
||||
```
|
||||
|
||||
|
||||
### Pybind部分 <span id="step4"></span>
|
||||
|
||||
* 创建Pybind文件
|
||||
* 创建位置
|
||||
* FastDeploy/fastdeploy/vision/classification/contrib/resnet_pybind.cc (FastDeploy/C++代码存放位置/视觉模型/任务名称/外部模型/模型名_pybind.cc)
|
||||
* 创建内容
|
||||
* 利用Pybind将C++中的函数变量绑定到Python中,具体代码请参考[resnet_pybind.cc](https://github.com/PaddlePaddle/FastDeploy/pull/347/files#diff-270af0d65720310e2cfbd5373c391b2110d65c0f4efa547f7b7eeffcb958bdec)。
|
||||
```C++
|
||||
void BindResNet(pybind11::module& m) {
|
||||
pybind11::class_<vision::classification::ResNet, FastDeployModel>(
|
||||
m, "ResNet")
|
||||
.def(pybind11::init<std::string, std::string, RuntimeOption, ModelFormat>())
|
||||
.def("predict", ...)
|
||||
.def_readwrite("size", &vision::classification::ResNet::size)
|
||||
.def_readwrite("mean_vals", &vision::classification::ResNet::mean_vals)
|
||||
.def_readwrite("std_vals", &vision::classification::ResNet::std_vals);
|
||||
}
|
||||
```
|
||||
|
||||
* 调用Pybind函数
|
||||
* 修改位置
|
||||
* FastDeploy/fastdeploy/vision/classification/classification_pybind.cc (FastDeploy/C++代码存放位置/视觉模型/任务名称/任务名称}_pybind.cc)
|
||||
* 修改内容
|
||||
```C++
|
||||
void BindResNet(pybind11::module& m);
|
||||
void BindClassification(pybind11::module& m) {
|
||||
auto classification_module =
|
||||
m.def_submodule("classification", "Image classification models.");
|
||||
BindResNet(classification_module);
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
### Python部分 <span id="step5"></span>
|
||||
|
||||
|
||||
* 创建`resnet.py`文件
|
||||
* 创建位置
|
||||
* FastDeploy/python/fastdeploy/vision/classification/contrib/resnet.py (FastDeploy/Python代码存放位置/fastdeploy/视觉模型/任务名称/外部模型/模型名.py)
|
||||
* 创建内容
|
||||
* 创建ResNet类继承自FastDeployModel,实现 `\_\_init\_\_`、Pybind绑定的函数(如`predict()`)、以及`对Pybind绑定的全局变量进行赋值和获取的函数`,具体代码请参考[resnet.py](https://github.com/PaddlePaddle/FastDeploy/pull/347/files#diff-a4dc5ec2d450e91f1c03819bf314c238b37ac678df56d7dea3aab7feac10a157)。
|
||||
|
||||
```python
|
||||
|
||||
class ResNet(FastDeployModel):
|
||||
def __init__(self, ...):
|
||||
self._model = C.vision.classification.ResNet(...)
|
||||
def predict(self, input_image, topk=1):
|
||||
return self._model.predict(input_image, topk)
|
||||
@property
|
||||
def size(self):
|
||||
return self._model.size
|
||||
@size.setter
|
||||
def size(self, wh):
|
||||
...
|
||||
```
|
||||
<span id="step6"></span>
|
||||
* 导入ResNet类
|
||||
* 修改位置
|
||||
* FastDeploy/python/fastdeploy/vision/classification/\_\_init\_\_.py (FastDeploy/Python代码存放位置/fastdeploy/视觉模型/任务名称/\_\_init\_\_.py)
|
||||
* 修改内容
|
||||
|
||||
```Python
|
||||
from .contrib.resnet import ResNet
|
||||
```
|
||||
|
||||
## 测试 <span id="test"></span>
|
||||
### 编译
|
||||
* C++
|
||||
* 位置:FastDeploy/
|
||||
|
||||
```
|
||||
mkdir build & cd build
|
||||
cmake .. -DENABLE_ORT_BACKEND=ON -DENABLE_VISION=ON -DCMAKE_INSTALL_PREFIX=${PWD/fastdeploy-0.0.3
|
||||
-DENABLE_PADDLE_BACKEND=ON -DENABLE_TRT_BACKEND=ON -DWITH_GPU=ON -DTRT_DIRECTORY=/PATH/TO/TensorRT/
|
||||
make -j8
|
||||
make install
|
||||
```
|
||||
|
||||
编译会得到 build/fastdeploy-0.0.3/。
|
||||
|
||||
* Python
|
||||
* 位置:FastDeploy/python/
|
||||
|
||||
```
|
||||
export TRT_DIRECTORY=/PATH/TO/TensorRT/ # 如果用TensorRT 需要填写TensorRT所在位置,并开启 ENABLE_TRT_BACKEND
|
||||
export ENABLE_TRT_BACKEND=ON
|
||||
export WITH_GPU=ON
|
||||
export ENABLE_PADDLE_BACKEND=ON
|
||||
export ENABLE_OPENVINO_BACKEND=ON
|
||||
export ENABLE_VISION=ON
|
||||
export ENABLE_ORT_BACKEND=ON
|
||||
python setup.py build
|
||||
python setup.py bdist_wheel
|
||||
cd dist
|
||||
pip install fastdeploy_gpu_python-版本号-cpxx-cpxxm-系统架构.whl
|
||||
```
|
||||
|
||||
### 编写测试代码
|
||||
* 创建位置: FastDeploy/examples/vision/classification/resnet/ (FastDeploy/示例目录/视觉模型/任务名称/模型名/)
|
||||
* 创建目录结构
|
||||
|
||||
```
|
||||
.
|
||||
├── cpp
|
||||
│ ├── CMakeLists.txt
|
||||
│ ├── infer.cc // C++ 版本测试代码
|
||||
│ └── README.md // C++版本使用文档
|
||||
├── python
|
||||
│ ├── infer.py // Python 版本测试代码
|
||||
│ └── README.md // Python版本使用文档
|
||||
└── README.md // ResNet 模型集成说明文档
|
||||
```
|
||||
|
||||
* C++
|
||||
* 编写CmakeLists文件、C++ 代码以及 README.md 内容请参考[cpp/](https://github.com/PaddlePaddle/FastDeploy/pull/347/files#diff-afcbe607b796509581f89e38b84190717f1eeda2df0419a2ac9034197ead5f96)。
|
||||
* 编译 infer.cc
|
||||
* 位置:FastDeploy/examples/vision/classification/resnet/cpp/
|
||||
|
||||
```
|
||||
mkdir build & cd build
|
||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=/PATH/TO/FastDeploy/build/fastdeploy-0.0.3/
|
||||
make
|
||||
```
|
||||
|
||||
* Python
|
||||
* Python 代码以及 README.md 内容请参考[python/](https://github.com/PaddlePaddle/FastDeploy/pull/347/files#diff-5a0d6be8c603a8b81454ac14c17fb93555288d9adf92bbe40454449309700135)。
|
||||
|
||||
### 为代码添加注释
|
||||
为了方便用户理解代码,我们需要为新增代码添加注释,添加注释方法可参考如下示例。
|
||||
- C++ 代码
|
||||
您需要在resnet.h文件中为函数和变量增加注释,有如下三种注释方式,具体可参考[resnet.h](https://github.com/PaddlePaddle/FastDeploy/pull/347/files#diff-69128489e918f305c208476ba793d8167e77de2aa7cadf5dcbac30da448bd28e)。
|
||||
|
||||
```C++
|
||||
/** \brief Predict for the input "im", the result will be saved in "result".
|
||||
*
|
||||
* \param[in] im Input image for inference.
|
||||
* \param[in] result Saving the inference result.
|
||||
* \param[in] topk The length of return values, e.g., if topk==2, the result will include the 2 most possible class label for input image.
|
||||
*/
|
||||
virtual bool Predict(cv::Mat* im, ClassifyResult* result, int topk = 1);
|
||||
|
||||
/// Tuple of (width, height)
|
||||
std::vector<int> size;
|
||||
/*! @brief Initialize for ResNet model, assign values to the global variables and call InitRuntime()
|
||||
*/
|
||||
bool Initialize();
|
||||
```
|
||||
- Python 代码
|
||||
你需要为resnet.py文件中的函数和变量增加适当的注释,示例如下,具体可参考[resnet.py](https://github.com/PaddlePaddle/FastDeploy/pull/347/files#diff-a4dc5ec2d450e91f1c03819bf314c238b37ac678df56d7dea3aab7feac10a157)。
|
||||
|
||||
```python
|
||||
def predict(self, input_image, topk=1):
|
||||
"""Classify an input image
|
||||
|
||||
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||
:param topk: (int)The topk result by the classify confidence score, default 1
|
||||
:return: ClassifyResult
|
||||
"""
|
||||
return self._model.predict(input_image, topk)
|
||||
```
|
||||
|
||||
对于集成模型过程中的其他文件,您也可以对实现的细节添加适当的注释说明。
|
@@ -18,3 +18,4 @@ FastDeploy
|
||||
image_classification.md
|
||||
keypoint_detection.md
|
||||
matting.md
|
||||
vision_results_en.md
|
||||
|
@@ -1,5 +1,7 @@
|
||||
# Description of Vision Results
|
||||
|
||||
本文档的中文版本参考[视觉模型预测结果说明](./vision_results_cn.md)
|
||||
|
||||
## ClassifyResult
|
||||
The code of ClassifyResult is defined in `fastdeploy/vision/common/result.h` and is used to indicate the classification label result and confidence the image.
|
||||
|
||||
|
Reference in New Issue
Block a user