mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00
Create function.md
This commit is contained in:
279
docs/docs_en/api/function.md
Normal file
279
docs/docs_en/api/function.md
Normal file
@@ -0,0 +1,279 @@
|
||||
# FDTensor C++ Tensor quantization function
|
||||
|
||||
FDTensor is FastDeploy's struct that represents the tensor at the C++ level. The struct is mainly used to manage the input and output data of the model during inference deployment and supports different Runtime backends.
|
||||
|
||||
In the development of C++-based inference deployment applications, developers often need to process some data on the input and output to get the actual input or the actual output of the application. This pre-processing data logic can easily be done by the original C++ standard library. But it can be difficult to develop, e.g. to find the maximum value for the 2nd dimension of a 3-dimensional Tensor. To solve this problem, FastDeploy has developed a set of C++ tensor functions based on FDTensor to reduce costs and increase efficiency for FastDeploy developers. There are currently four main functions: Reduce, Manipulate, Math and Elementwise.
|
||||
|
||||
## Reduce Class Function
|
||||
|
||||
Currently FastDeploy supports 7 types of Reduce class functions :Max, Min, Sum, All, Any, Mean, Prod.
|
||||
|
||||
### Max
|
||||
|
||||
#### Function Signature
|
||||
|
||||
```c++
|
||||
/** Excute the maximum operation for input FDTensor along given dims.
|
||||
@param x The input tensor.
|
||||
@param out The output tensor which stores the result.
|
||||
@param dims The vector of axis which will be reduced.
|
||||
@param keep_dim Whether to keep the reduced dims, default false.
|
||||
@param reduce_all Whether to reduce all dims, default false.
|
||||
*/
|
||||
void Max(const FDTensor& x, FDTensor* out,
|
||||
const std::vector<int64_t>& dims,
|
||||
bool keep_dim = false, bool reduce_all = false);
|
||||
```
|
||||
|
||||
#### Demo
|
||||
|
||||
```c++
|
||||
FDTensor input, output;
|
||||
std::vector<int> inputs = {2, 4, 3, 7, 1, 5};
|
||||
input.SetExternalData({2, 3}, FDDataType::INT32, inputs.data());
|
||||
|
||||
// Calculate the max value for axis 0 of `inputs`
|
||||
// The output result would be [[7, 4, 5]].
|
||||
Max(input, &output, {0}, /* keep_dim = */true);
|
||||
```
|
||||
|
||||
### Min
|
||||
|
||||
#### Function Signature
|
||||
|
||||
```c++
|
||||
/** Excute the minimum operation for input FDTensor along given dims.
|
||||
@param x The input tensor.
|
||||
@param out The output tensor which stores the result.
|
||||
@param dims The vector of axis which will be reduced.
|
||||
@param keep_dim Whether to keep the reduced dims, default false.
|
||||
@param reduce_all Whether to reduce all dims, default false.
|
||||
*/
|
||||
void Min(const FDTensor& x, FDTensor* out,
|
||||
const std::vector<int64_t>& dims,
|
||||
bool keep_dim = false, bool reduce_all = false);
|
||||
```
|
||||
|
||||
#### Demo
|
||||
|
||||
```c++
|
||||
FDTensor input, output;
|
||||
std::vector<int> inputs = {2, 4, 3, 7, 1, 5};
|
||||
input.SetExternalData({2, 3}, FDDataType::INT32, inputs.data());
|
||||
|
||||
// Calculate the min value for axis 0 of `inputs`
|
||||
// The output result would be [[2, 1, 3]].
|
||||
Min(input, &output, {0}, /* keep_dim = */true);
|
||||
```
|
||||
|
||||
### Sum
|
||||
|
||||
#### Function Signature
|
||||
|
||||
```c++
|
||||
/** Excute the sum operation for input FDTensor along given dims.
|
||||
@param x The input tensor.
|
||||
@param out The output tensor which stores the result.
|
||||
@param dims The vector of axis which will be reduced.
|
||||
@param keep_dim Whether to keep the reduced dims, default false.
|
||||
@param reduce_all Whether to reduce all dims, default false.
|
||||
*/
|
||||
void Sum(const FDTensor& x, FDTensor* out,
|
||||
const std::vector<int64_t>& dims,
|
||||
bool keep_dim = false, bool reduce_all = false);
|
||||
```
|
||||
|
||||
#### Demo
|
||||
|
||||
```c++
|
||||
FDTensor input, output;
|
||||
std::vector<int> inputs = {2, 4, 3, 7, 1, 5};
|
||||
input.SetExternalData({2, 3}, FDDataType::INT32, inputs.data());
|
||||
|
||||
// Calculate the sum value for axis 0 of `inputs`
|
||||
// The output result would be [[9, 5, 8]].
|
||||
Sum(input, &output, {0}, /* keep_dim = */true);
|
||||
```
|
||||
|
||||
### Mean
|
||||
|
||||
#### Function Signature
|
||||
|
||||
```c++
|
||||
/** Excute the mean operation for input FDTensor along given dims.
|
||||
@param x The input tensor.
|
||||
@param out The output tensor which stores the result.
|
||||
@param dims The vector of axis which will be reduced.
|
||||
@param keep_dim Whether to keep the reduced dims, default false.
|
||||
@param reduce_all Whether to reduce all dims, default false.
|
||||
*/
|
||||
void Mean(const FDTensor& x, FDTensor* out,
|
||||
const std::vector<int64_t>& dims,
|
||||
bool keep_dim = false, bool reduce_all = false);
|
||||
```
|
||||
|
||||
#### Demo
|
||||
|
||||
```c++
|
||||
FDTensor input, output;
|
||||
std::vector<int> inputs = {2, 4, 3, 7, 1, 5};
|
||||
input.SetExternalData({2, 3}, FDDataType::INT32, inputs.data());
|
||||
|
||||
// Calculate the mean value for axis 0 of `inputs`
|
||||
// The output result would be [[4, 2, 4]].
|
||||
Mean(input, &output, {0}, /* keep_dim = */true);
|
||||
```
|
||||
|
||||
### Prod
|
||||
|
||||
#### Function Signature
|
||||
|
||||
```c++
|
||||
/** Excute the product operation for input FDTensor along given dims.
|
||||
@param x The input tensor.
|
||||
@param out The output tensor which stores the result.
|
||||
@param dims The vector of axis which will be reduced.
|
||||
@param keep_dim Whether to keep the reduced dims, default false.
|
||||
@param reduce_all Whether to reduce all dims, default false.
|
||||
*/
|
||||
void Prod(const FDTensor& x, FDTensor* out,
|
||||
const std::vector<int64_t>& dims,
|
||||
bool keep_dim = false, bool reduce_all = false);
|
||||
```
|
||||
|
||||
#### Demo
|
||||
|
||||
```c++
|
||||
FDTensor input, output;
|
||||
std::vector<int> inputs = {2, 4, 3, 7, 1, 5};
|
||||
input.SetExternalData({2, 3}, FDDataType::INT32, inputs.data());
|
||||
|
||||
// Calculate the product value for axis 0 of `inputs`
|
||||
// The output result would be [[14, 4, 15]].
|
||||
Prod(input, &output, {0}, /* keep_dim = */true);
|
||||
```
|
||||
|
||||
### Any
|
||||
|
||||
#### Function Signature
|
||||
|
||||
```c++
|
||||
/** Excute the any operation for input FDTensor along given dims.
|
||||
@param x The input tensor.
|
||||
@param out The output tensor which stores the result.
|
||||
@param dims The vector of axis which will be reduced.
|
||||
@param keep_dim Whether to keep the reduced dims, default false.
|
||||
@param reduce_all Whether to reduce all dims, default false.
|
||||
*/
|
||||
void Any(const FDTensor& x, FDTensor* out,
|
||||
const std::vector<int64_t>& dims,
|
||||
bool keep_dim = false, bool reduce_all = false);
|
||||
```
|
||||
|
||||
#### Demo
|
||||
|
||||
```c++
|
||||
FDTensor input, output;
|
||||
std::array<bool, 6> bool_inputs = {false, false, true, true, false, true};
|
||||
input.SetExternalData({2, 3}, FDDataType::INT32, bool_inputs.data());
|
||||
|
||||
// Calculate the any value for axis 0 of `inputs`
|
||||
// The output result would be [[true, false, true]].
|
||||
Any(input, &output, {0}, /* keep_dim = */true);
|
||||
```
|
||||
|
||||
### All
|
||||
|
||||
#### Function Signature
|
||||
|
||||
```c++
|
||||
/** Excute the all operation for input FDTensor along given dims.
|
||||
@param x The input tensor.
|
||||
@param out The output tensor which stores the result.
|
||||
@param dims The vector of axis which will be reduced.
|
||||
@param keep_dim Whether to keep the reduced dims, default false.
|
||||
@param reduce_all Whether to reduce all dims, default false.
|
||||
*/
|
||||
void All(const FDTensor& x, FDTensor* out,
|
||||
const std::vector<int64_t>& dims,
|
||||
bool keep_dim = false, bool reduce_all = false);
|
||||
```
|
||||
|
||||
#### Demo
|
||||
|
||||
```c++
|
||||
FDTensor input, output;
|
||||
std::array<bool, 6> bool_inputs = {false, false, true, true, false, true};
|
||||
input.SetExternalData({2, 3}, FDDataType::INT32, bool_inputs.data());
|
||||
|
||||
// Calculate the all value for axis 0 of `inputs`
|
||||
// The output result would be [[false, false, true]].
|
||||
All(input, &output, {0}, /* keep_dim = */true);
|
||||
```
|
||||
|
||||
## Manipulate Class Function
|
||||
|
||||
Currently FastDeploy supports 1 Manipulate class function: Transpose.
|
||||
|
||||
### Transpose
|
||||
|
||||
#### Function Signature
|
||||
|
||||
```c++
|
||||
/** Excute the transpose operation for input FDTensor along given dims.
|
||||
@param x The input tensor.
|
||||
@param out The output tensor which stores the result.
|
||||
@param dims The vector of axis which the input tensor will transpose.
|
||||
*/
|
||||
void Transpose(const FDTensor& x, FDTensor* out,
|
||||
const std::vector<int64_t>& dims);
|
||||
```
|
||||
|
||||
#### Demo
|
||||
|
||||
```c++
|
||||
FDTensor input, output;
|
||||
std::vector<float> inputs = {2, 4, 3, 7, 1, 5};
|
||||
input.SetExternalData({2, 3}, FDDataType::FP32, inputs.data());
|
||||
|
||||
// Transpose the input tensor with axis {1, 0}.
|
||||
// The output result would be [[2, 7], [4, 1], [3, 5]]
|
||||
Transpose(input, &output, {1, 0});
|
||||
```
|
||||
|
||||
## Math Class Function
|
||||
|
||||
Currently FastDeploy supports 1 Math class function: Softmax.
|
||||
|
||||
### Softmax
|
||||
|
||||
#### Function Signature
|
||||
|
||||
```c++
|
||||
/** Excute the softmax operation for input FDTensor along given dims.
|
||||
@param x The input tensor.
|
||||
@param out The output tensor which stores the result.
|
||||
@param axis The axis to be computed softmax value.
|
||||
*/
|
||||
void Softmax(const FDTensor& x, FDTensor* out, int axis = -1);
|
||||
```
|
||||
|
||||
#### Demo
|
||||
|
||||
```c++
|
||||
FDTensor input, output;
|
||||
CheckShape check_shape;
|
||||
CheckData check_data;
|
||||
std::vector<float> inputs = {1, 2, 3, 4, 5, 6};
|
||||
input.SetExternalData({2, 3}, FDDataType::FP32, inputs.data());
|
||||
|
||||
// Transpose the input tensor with axis {1, 0}.
|
||||
// The output result would be
|
||||
// [[0.04742587, 0.04742587, 0.04742587],
|
||||
// [0.95257413, 0.95257413, 0.95257413]]
|
||||
Softmax(input, &output, 0);
|
||||
```
|
||||
|
||||
## Elementwise Class Function
|
||||
|
||||
To be continued...
|
Reference in New Issue
Block a user