[Other] Move comments for deprecated functions (#1275)

Move comments for deprecated functions
This commit is contained in:
Jason
2023-02-09 10:04:18 +08:00
committed by GitHub
parent ef852579a9
commit b8afb0d040
5 changed files with 104 additions and 267 deletions

View File

@@ -75,6 +75,16 @@ struct PaddleBackendOption {
delete_pass_names.push_back(pass_name);
}
void SetIpuConfig(bool enable_fp16, int replica_num,
float available_memory_proportion,
bool enable_half_partial) {
ipu_option.ipu_enable_fp16 = enable_fp16;
ipu_option.ipu_replica_num = replica_num;
ipu_option.ipu_available_memory_proportion =
available_memory_proportion;
ipu_option.ipu_enable_half_partial = enable_half_partial;
}
// The belowing parameters may be removed, please do not
// read or write them directly
TrtBackendOption trt_option;

View File

@@ -47,7 +47,8 @@ void BindPaddleOption(pybind11::module& m) {
.def_readwrite("gpu_mem_init_size",
&PaddleBackendOption::gpu_mem_init_size)
.def("disable_trt_ops", &PaddleBackendOption::DisableTrtOps)
.def("delete_pass", &PaddleBackendOption::DeletePass);
.def("delete_pass", &PaddleBackendOption::DeletePass)
.def("set_ipu_config", &PaddleBackendOption::SetIpuConfig);
}
} // namespace fastdeploy

View File

@@ -458,14 +458,4 @@ void RuntimeOption::UseIpu(int device_num, int micro_batch_size,
#endif
}
void RuntimeOption::SetIpuConfig(bool enable_fp16, int replica_num,
float available_memory_proportion,
bool enable_half_partial) {
paddle_infer_option.ipu_option.ipu_enable_fp16 = enable_fp16;
paddle_infer_option.ipu_option.ipu_replica_num = replica_num;
paddle_infer_option.ipu_option.ipu_available_memory_proportion =
available_memory_proportion;
paddle_infer_option.ipu_option.ipu_enable_half_partial = enable_half_partial;
}
} // namespace fastdeploy

View File

@@ -61,22 +61,19 @@ struct FASTDEPLOY_DECL RuntimeOption {
/// Use cpu to inference, the runtime will inference on CPU by default
void UseCpu();
/// Use Nvidia GPU to inference
void UseGpu(int gpu_id = 0);
/// Use RKNPU2 e.g RK3588/RK356X to inference
void UseRKNPU2(fastdeploy::rknpu2::CpuName rknpu2_name =
fastdeploy::rknpu2::CpuName::RK3588,
fastdeploy::rknpu2::CoreMask rknpu2_core =
fastdeploy::rknpu2::CoreMask::RKNN_NPU_CORE_0);
/// Use TimVX to inference
/// Use TimVX e.g RV1126/A311D to inference
void UseTimVX();
/// Use Huawei Ascend to inference
void UseAscend();
///
/// Use Sophgo to inference
void UseSophgo();
/// \brief Turn on KunlunXin XPU.
///
/// \param kunlunxin_id the KunlunXin XPU card to use (default is 0).
@@ -106,221 +103,25 @@ struct FASTDEPLOY_DECL RuntimeOption {
bool adaptive_seqlen = false,
bool enable_multi_stream = false);
/// Use Sophgo to inference
void UseSophgo();
void SetExternalStream(void* external_stream);
/*
* @brief Set number of cpu threads while inference on CPU, by default it will decided by the different backends
*/
void SetCpuThreadNum(int thread_num);
/// Set ORT graph opt level, default is decide by ONNX Runtime itself
void SetOrtGraphOptLevel(int level = -1);
/// Set Paddle Inference as inference backend, support CPU/GPU
void UsePaddleBackend();
/// Wrapper function of UsePaddleBackend()
void UsePaddleInferBackend() { return UsePaddleBackend(); }
/// Set ONNX Runtime as inference backend, support CPU/GPU
void UseOrtBackend();
/// Set SOPHGO Runtime as inference backend, support CPU/GPU
/// Set SOPHGO Runtime as inference backend, support SOPHGO
void UseSophgoBackend();
/// Set TensorRT as inference backend, only support GPU
void UseTrtBackend();
/// Set Poros backend as inference backend, support CPU/GPU
void UsePorosBackend();
/// Set OpenVINO as inference backend, only support CPU
void UseOpenVINOBackend();
/// Set Paddle Lite as inference backend, only support arm cpu
void UseLiteBackend();
/// Wrapper function of UseLiteBackend()
void UsePaddleLiteBackend() { return UseLiteBackend(); }
/// Set mkldnn switch while using Paddle Inference as inference backend
void SetPaddleMKLDNN(bool pd_mkldnn = true);
/*
* @brief If TensorRT backend is used, EnablePaddleToTrt will change to use Paddle Inference backend, and use its integrated TensorRT instead.
*/
void EnablePaddleToTrt();
/**
* @brief Delete pass by name while using Paddle Inference as inference backend, this can be called multiple times to delete a set of passes
*/
void DeletePaddleBackendPass(const std::string& delete_pass_name);
/**
* @brief Enable print debug information while using Paddle Inference as inference backend, the backend disable the debug information by default
*/
void EnablePaddleLogInfo();
/**
* @brief Disable print debug information while using Paddle Inference as inference backend
*/
void DisablePaddleLogInfo();
/**
* @brief Set shape cache size while using Paddle Inference with mkldnn, by default it will cache all the difference shape
*/
void SetPaddleMKLDNNCacheSize(int size);
/**
* @brief Set device name for OpenVINO, default 'CPU', can also be 'AUTO', 'GPU', 'GPU.1'....
*/
void SetOpenVINODevice(const std::string& name = "CPU");
/**
* @brief Set shape info for OpenVINO
*/
void SetOpenVINOShapeInfo(
const std::map<std::string, std::vector<int64_t>>& shape_info) {
openvino_option.shape_infos = shape_info;
}
/**
* @brief While use OpenVINO backend with intel GPU, use this interface to specify operators run on CPU
*/
void SetOpenVINOCpuOperators(const std::vector<std::string>& operators) {
openvino_option.SetCpuOperators(operators);
}
/**
* @brief Set optimzed model dir for Paddle Lite backend.
*/
void SetLiteOptimizedModelDir(const std::string& optimized_model_dir);
/**
* @brief Set subgraph partition path for Paddle Lite backend.
*/
void SetLiteSubgraphPartitionPath(
const std::string& nnadapter_subgraph_partition_config_path);
/**
* @brief Set subgraph partition path for Paddle Lite backend.
*/
void SetLiteSubgraphPartitionConfigBuffer(
const std::string& nnadapter_subgraph_partition_config_buffer);
/**
* @brief Set context properties for Paddle Lite backend.
*/
void
SetLiteContextProperties(const std::string& nnadapter_context_properties);
/**
* @brief Set model cache dir for Paddle Lite backend.
*/
void SetLiteModelCacheDir(const std::string& nnadapter_model_cache_dir);
/**
* @brief Set dynamic shape info for Paddle Lite backend.
*/
void SetLiteDynamicShapeInfo(
const std::map<std::string, std::vector<std::vector<int64_t>>>&
nnadapter_dynamic_shape_info);
/**
* @brief Set mixed precision quantization config path for Paddle Lite backend.
*/
void SetLiteMixedPrecisionQuantizationConfigPath(
const std::string& nnadapter_mixed_precision_quantization_config_path);
/**
* @brief enable half precision while use paddle lite backend
*/
void EnableLiteFP16();
/**
* @brief disable half precision, change to full precision(float32)
*/
void DisableLiteFP16();
/**
* @brief enable int8 precision while use paddle lite backend
*/
void EnableLiteInt8();
/**
* @brief disable int8 precision, change to full precision(float32)
*/
void DisableLiteInt8();
/**
* @brief Set power mode while using Paddle Lite as inference backend, mode(0: LITE_POWER_HIGH; 1: LITE_POWER_LOW; 2: LITE_POWER_FULL; 3: LITE_POWER_NO_BIND, 4: LITE_POWER_RAND_HIGH; 5: LITE_POWER_RAND_LOW, refer [paddle lite](https://paddle-lite.readthedocs.io/zh/latest/api_reference/cxx_api_doc.html#set-power-mode) for more details)
*/
void SetLitePowerMode(LitePowerMode mode);
/** \brief Set shape range of input tensor for the model that contain dynamic input shape while using TensorRT backend
*
* \param[in] input_name The name of input for the model which is dynamic shape
* \param[in] min_shape The minimal shape for the input tensor
* \param[in] opt_shape The optimized shape for the input tensor, just set the most common shape, if set as default value, it will keep same with min_shape
* \param[in] max_shape The maximum shape for the input tensor, if set as default value, it will keep same with min_shape
*/
void SetTrtInputShape(
const std::string& input_name, const std::vector<int32_t>& min_shape,
const std::vector<int32_t>& opt_shape = std::vector<int32_t>(),
const std::vector<int32_t>& max_shape = std::vector<int32_t>());
/// Set max_workspace_size for TensorRT, default 1<<30
void SetTrtMaxWorkspaceSize(size_t trt_max_workspace_size);
/// Set max_batch_size for TensorRT, default 32
void SetTrtMaxBatchSize(size_t max_batch_size);
/**
* @brief Enable FP16 inference while using TensorRT backend. Notice: not all the GPU device support FP16, on those device doesn't support FP16, FastDeploy will fallback to FP32 automaticly
*/
void EnableTrtFP16();
/// Disable FP16 inference while using TensorRT backend
void DisableTrtFP16();
/**
* @brief Set cache file path while use TensorRT backend. Loadding a Paddle/ONNX model and initialize TensorRT will take a long time, by this interface it will save the tensorrt engine to `cache_file_path`, and load it directly while execute the code again
*/
void SetTrtCacheFile(const std::string& cache_file_path);
/**
* @brief Enable pinned memory. Pinned memory can be utilized to speedup the data transfer between CPU and GPU. Currently it's only suppurted in TRT backend and Paddle Inference backend.
*/
void EnablePinnedMemory();
/**
* @brief Disable pinned memory
*/
void DisablePinnedMemory();
/**
* @brief Enable to collect shape in paddle trt backend
*/
void EnablePaddleTrtCollectShape();
/**
* @brief Disable to collect shape in paddle trt backend
*/
void DisablePaddleTrtCollectShape();
/**
* @brief Prevent ops running in paddle trt backend
*/
void DisablePaddleTrtOPs(const std::vector<std::string>& ops);
/*
* @brief Set number of streams by the OpenVINO backends
*/
void SetOpenVINOStreams(int num_streams);
/** \Use Graphcore IPU to inference.
*
* \param[in] device_num the number of IPUs.
@@ -331,16 +132,18 @@ struct FASTDEPLOY_DECL RuntimeOption {
void UseIpu(int device_num = 1, int micro_batch_size = 1,
bool enable_pipelining = false, int batches_per_step = 1);
/** \brief Set IPU config.
*
* \param[in] enable_fp16 enable fp16.
* \param[in] replica_num the number of graph replication.
* \param[in] available_memory_proportion the available memory proportion for matmul/conv.
* \param[in] enable_half_partial enable fp16 partial for matmul, only work with fp16.
*/
void SetIpuConfig(bool enable_fp16 = false, int replica_num = 1,
float available_memory_proportion = 1.0,
bool enable_half_partial = false);
/// Option to configure ONNX Runtime backend
OrtBackendOption ort_option;
/// Option to configure TensorRT backend
TrtBackendOption trt_option;
/// Option to configure Paddle Inference backend
PaddleBackendOption paddle_infer_option;
/// Option to configure Poros backend
PorosBackendOption poros_option;
/// Option to configure OpenVINO backend
OpenVINOBackendOption openvino_option;
/// Option to configure Paddle Lite backend
LiteBackendOption paddle_lite_option;
/** \brief Set the profile mode as 'true'.
*
@@ -362,46 +165,9 @@ struct FASTDEPLOY_DECL RuntimeOption {
benchmark_option.enable_profile = false;
}
Backend backend = Backend::UNKNOWN;
// for cpu inference
// default will let the backend choose their own default value
int cpu_thread_num = -1;
int device_id = 0;
Device device = Device::CPU;
void* external_stream_ = nullptr;
bool enable_pinned_memory = false;
/// Option to configure ONNX Runtime backend
OrtBackendOption ort_option;
/// Option to configure TensorRT backend
TrtBackendOption trt_option;
/// Option to configure Paddle Inference backend
PaddleBackendOption paddle_infer_option;
// ======Only for PaddleTrt Backend=======
std::vector<std::string> trt_disabled_ops_{};
/// Option to configure Poros backend
PorosBackendOption poros_option;
/// Option to configure OpenVINO backend
OpenVINOBackendOption openvino_option;
// ======Only for RKNPU2 Backend=======
fastdeploy::rknpu2::CpuName rknpu2_cpu_name_ =
fastdeploy::rknpu2::CpuName::RK3588;
fastdeploy::rknpu2::CoreMask rknpu2_core_mask_ =
fastdeploy::rknpu2::CoreMask::RKNN_NPU_CORE_AUTO;
/// Option to configure Paddle Lite backend
LiteBackendOption paddle_lite_option;
/// Benchmark option
benchmark::BenchmarkOption benchmark_option;
// If model_from_memory is true, the model_file and params_file is
// binary stream in memory;
@@ -412,8 +178,77 @@ struct FASTDEPLOY_DECL RuntimeOption {
/// format of input model
ModelFormat model_format = ModelFormat::PADDLE;
/// Benchmark option
benchmark::BenchmarkOption benchmark_option;
// for cpu inference
// default will let the backend choose their own default value
int cpu_thread_num = -1;
int device_id = 0;
Backend backend = Backend::UNKNOWN;
Device device = Device::CPU;
void* external_stream_ = nullptr;
bool enable_pinned_memory = false;
// ======Only for RKNPU2 Backend=======
fastdeploy::rknpu2::CpuName rknpu2_cpu_name_ =
fastdeploy::rknpu2::CpuName::RK3588;
fastdeploy::rknpu2::CoreMask rknpu2_core_mask_ =
fastdeploy::rknpu2::CoreMask::RKNN_NPU_CORE_AUTO;
// *** The belowing api are deprecated, will be removed in v1.2.0
// *** Do not use it anymore
void SetPaddleMKLDNN(bool pd_mkldnn = true);
void EnablePaddleToTrt();
void DeletePaddleBackendPass(const std::string& delete_pass_name);
void EnablePaddleLogInfo();
void DisablePaddleLogInfo();
void SetPaddleMKLDNNCacheSize(int size);
void SetOpenVINODevice(const std::string& name = "CPU");
void SetOpenVINOShapeInfo(
const std::map<std::string, std::vector<int64_t>>& shape_info) {
openvino_option.shape_infos = shape_info;
}
void SetOpenVINOCpuOperators(const std::vector<std::string>& operators) {
openvino_option.SetCpuOperators(operators);
}
void SetLiteOptimizedModelDir(const std::string& optimized_model_dir);
void SetLiteSubgraphPartitionPath(
const std::string& nnadapter_subgraph_partition_config_path);
void SetLiteSubgraphPartitionConfigBuffer(
const std::string& nnadapter_subgraph_partition_config_buffer);
void
SetLiteContextProperties(const std::string& nnadapter_context_properties);
void SetLiteModelCacheDir(const std::string& nnadapter_model_cache_dir);
void SetLiteDynamicShapeInfo(
const std::map<std::string, std::vector<std::vector<int64_t>>>&
nnadapter_dynamic_shape_info);
void SetLiteMixedPrecisionQuantizationConfigPath(
const std::string& nnadapter_mixed_precision_quantization_config_path);
void EnableLiteFP16();
void DisableLiteFP16();
void EnableLiteInt8();
void DisableLiteInt8();
void SetLitePowerMode(LitePowerMode mode);
void SetTrtInputShape(
const std::string& input_name, const std::vector<int32_t>& min_shape,
const std::vector<int32_t>& opt_shape = std::vector<int32_t>(),
const std::vector<int32_t>& max_shape = std::vector<int32_t>());
void SetTrtMaxWorkspaceSize(size_t trt_max_workspace_size);
void SetTrtMaxBatchSize(size_t max_batch_size);
void EnableTrtFP16();
void DisableTrtFP16();
void SetTrtCacheFile(const std::string& cache_file_path);
void EnablePinnedMemory();
void DisablePinnedMemory();
void EnablePaddleTrtCollectShape();
void DisablePaddleTrtCollectShape();
void DisablePaddleTrtOPs(const std::vector<std::string>& ops);
void SetOpenVINOStreams(int num_streams);
void SetOrtGraphOptLevel(int level = -1);
void UsePaddleBackend();
void UseLiteBackend();
};
} // namespace fastdeploy

View File

@@ -583,7 +583,8 @@ class RuntimeOption:
replica_num=1,
available_memory_proportion=1.0,
enable_half_partial=False):
return self._option.set_ipu_config(enable_fp16, replica_num,
logging.warning("`RuntimeOption.set_ipu_config` will be deprecated in v1.2.0, please use `RuntimeOption.paddle_infer_option.set_ipu_config()` instead.")
self._option.paddle_infer_option.set_ipu_config(enable_fp16, replica_num,
available_memory_proportion,
enable_half_partial)