mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-27 18:41:02 +08:00
[Other] Move comments for deprecated functions (#1275)
Move comments for deprecated functions
This commit is contained in:
@@ -61,22 +61,19 @@ struct FASTDEPLOY_DECL RuntimeOption {
|
||||
|
||||
/// Use cpu to inference, the runtime will inference on CPU by default
|
||||
void UseCpu();
|
||||
|
||||
/// Use Nvidia GPU to inference
|
||||
void UseGpu(int gpu_id = 0);
|
||||
|
||||
/// Use RKNPU2 e.g RK3588/RK356X to inference
|
||||
void UseRKNPU2(fastdeploy::rknpu2::CpuName rknpu2_name =
|
||||
fastdeploy::rknpu2::CpuName::RK3588,
|
||||
fastdeploy::rknpu2::CoreMask rknpu2_core =
|
||||
fastdeploy::rknpu2::CoreMask::RKNN_NPU_CORE_0);
|
||||
|
||||
/// Use TimVX to inference
|
||||
/// Use TimVX e.g RV1126/A311D to inference
|
||||
void UseTimVX();
|
||||
|
||||
/// Use Huawei Ascend to inference
|
||||
void UseAscend();
|
||||
|
||||
///
|
||||
/// Use Sophgo to inference
|
||||
void UseSophgo();
|
||||
/// \brief Turn on KunlunXin XPU.
|
||||
///
|
||||
/// \param kunlunxin_id the KunlunXin XPU card to use (default is 0).
|
||||
@@ -106,221 +103,25 @@ struct FASTDEPLOY_DECL RuntimeOption {
|
||||
bool adaptive_seqlen = false,
|
||||
bool enable_multi_stream = false);
|
||||
|
||||
/// Use Sophgo to inference
|
||||
void UseSophgo();
|
||||
|
||||
void SetExternalStream(void* external_stream);
|
||||
|
||||
/*
|
||||
* @brief Set number of cpu threads while inference on CPU, by default it will decided by the different backends
|
||||
*/
|
||||
void SetCpuThreadNum(int thread_num);
|
||||
|
||||
/// Set ORT graph opt level, default is decide by ONNX Runtime itself
|
||||
void SetOrtGraphOptLevel(int level = -1);
|
||||
|
||||
/// Set Paddle Inference as inference backend, support CPU/GPU
|
||||
void UsePaddleBackend();
|
||||
|
||||
/// Wrapper function of UsePaddleBackend()
|
||||
void UsePaddleInferBackend() { return UsePaddleBackend(); }
|
||||
|
||||
/// Set ONNX Runtime as inference backend, support CPU/GPU
|
||||
void UseOrtBackend();
|
||||
|
||||
/// Set SOPHGO Runtime as inference backend, support CPU/GPU
|
||||
/// Set SOPHGO Runtime as inference backend, support SOPHGO
|
||||
void UseSophgoBackend();
|
||||
|
||||
/// Set TensorRT as inference backend, only support GPU
|
||||
void UseTrtBackend();
|
||||
|
||||
/// Set Poros backend as inference backend, support CPU/GPU
|
||||
void UsePorosBackend();
|
||||
|
||||
/// Set OpenVINO as inference backend, only support CPU
|
||||
void UseOpenVINOBackend();
|
||||
|
||||
/// Set Paddle Lite as inference backend, only support arm cpu
|
||||
void UseLiteBackend();
|
||||
|
||||
/// Wrapper function of UseLiteBackend()
|
||||
void UsePaddleLiteBackend() { return UseLiteBackend(); }
|
||||
|
||||
/// Set mkldnn switch while using Paddle Inference as inference backend
|
||||
void SetPaddleMKLDNN(bool pd_mkldnn = true);
|
||||
|
||||
/*
|
||||
* @brief If TensorRT backend is used, EnablePaddleToTrt will change to use Paddle Inference backend, and use its integrated TensorRT instead.
|
||||
*/
|
||||
void EnablePaddleToTrt();
|
||||
|
||||
/**
|
||||
* @brief Delete pass by name while using Paddle Inference as inference backend, this can be called multiple times to delete a set of passes
|
||||
*/
|
||||
void DeletePaddleBackendPass(const std::string& delete_pass_name);
|
||||
|
||||
/**
|
||||
* @brief Enable print debug information while using Paddle Inference as inference backend, the backend disable the debug information by default
|
||||
*/
|
||||
void EnablePaddleLogInfo();
|
||||
|
||||
/**
|
||||
* @brief Disable print debug information while using Paddle Inference as inference backend
|
||||
*/
|
||||
void DisablePaddleLogInfo();
|
||||
|
||||
/**
|
||||
* @brief Set shape cache size while using Paddle Inference with mkldnn, by default it will cache all the difference shape
|
||||
*/
|
||||
void SetPaddleMKLDNNCacheSize(int size);
|
||||
|
||||
/**
|
||||
* @brief Set device name for OpenVINO, default 'CPU', can also be 'AUTO', 'GPU', 'GPU.1'....
|
||||
*/
|
||||
void SetOpenVINODevice(const std::string& name = "CPU");
|
||||
|
||||
/**
|
||||
* @brief Set shape info for OpenVINO
|
||||
*/
|
||||
void SetOpenVINOShapeInfo(
|
||||
const std::map<std::string, std::vector<int64_t>>& shape_info) {
|
||||
openvino_option.shape_infos = shape_info;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief While use OpenVINO backend with intel GPU, use this interface to specify operators run on CPU
|
||||
*/
|
||||
void SetOpenVINOCpuOperators(const std::vector<std::string>& operators) {
|
||||
openvino_option.SetCpuOperators(operators);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Set optimzed model dir for Paddle Lite backend.
|
||||
*/
|
||||
void SetLiteOptimizedModelDir(const std::string& optimized_model_dir);
|
||||
|
||||
/**
|
||||
* @brief Set subgraph partition path for Paddle Lite backend.
|
||||
*/
|
||||
void SetLiteSubgraphPartitionPath(
|
||||
const std::string& nnadapter_subgraph_partition_config_path);
|
||||
|
||||
/**
|
||||
* @brief Set subgraph partition path for Paddle Lite backend.
|
||||
*/
|
||||
void SetLiteSubgraphPartitionConfigBuffer(
|
||||
const std::string& nnadapter_subgraph_partition_config_buffer);
|
||||
|
||||
/**
|
||||
* @brief Set context properties for Paddle Lite backend.
|
||||
*/
|
||||
void
|
||||
SetLiteContextProperties(const std::string& nnadapter_context_properties);
|
||||
|
||||
/**
|
||||
* @brief Set model cache dir for Paddle Lite backend.
|
||||
*/
|
||||
void SetLiteModelCacheDir(const std::string& nnadapter_model_cache_dir);
|
||||
|
||||
/**
|
||||
* @brief Set dynamic shape info for Paddle Lite backend.
|
||||
*/
|
||||
void SetLiteDynamicShapeInfo(
|
||||
const std::map<std::string, std::vector<std::vector<int64_t>>>&
|
||||
nnadapter_dynamic_shape_info);
|
||||
|
||||
/**
|
||||
* @brief Set mixed precision quantization config path for Paddle Lite backend.
|
||||
*/
|
||||
void SetLiteMixedPrecisionQuantizationConfigPath(
|
||||
const std::string& nnadapter_mixed_precision_quantization_config_path);
|
||||
|
||||
/**
|
||||
* @brief enable half precision while use paddle lite backend
|
||||
*/
|
||||
void EnableLiteFP16();
|
||||
|
||||
/**
|
||||
* @brief disable half precision, change to full precision(float32)
|
||||
*/
|
||||
void DisableLiteFP16();
|
||||
|
||||
/**
|
||||
* @brief enable int8 precision while use paddle lite backend
|
||||
*/
|
||||
void EnableLiteInt8();
|
||||
|
||||
/**
|
||||
* @brief disable int8 precision, change to full precision(float32)
|
||||
*/
|
||||
void DisableLiteInt8();
|
||||
|
||||
/**
|
||||
* @brief Set power mode while using Paddle Lite as inference backend, mode(0: LITE_POWER_HIGH; 1: LITE_POWER_LOW; 2: LITE_POWER_FULL; 3: LITE_POWER_NO_BIND, 4: LITE_POWER_RAND_HIGH; 5: LITE_POWER_RAND_LOW, refer [paddle lite](https://paddle-lite.readthedocs.io/zh/latest/api_reference/cxx_api_doc.html#set-power-mode) for more details)
|
||||
*/
|
||||
void SetLitePowerMode(LitePowerMode mode);
|
||||
|
||||
/** \brief Set shape range of input tensor for the model that contain dynamic input shape while using TensorRT backend
|
||||
*
|
||||
* \param[in] input_name The name of input for the model which is dynamic shape
|
||||
* \param[in] min_shape The minimal shape for the input tensor
|
||||
* \param[in] opt_shape The optimized shape for the input tensor, just set the most common shape, if set as default value, it will keep same with min_shape
|
||||
* \param[in] max_shape The maximum shape for the input tensor, if set as default value, it will keep same with min_shape
|
||||
*/
|
||||
void SetTrtInputShape(
|
||||
const std::string& input_name, const std::vector<int32_t>& min_shape,
|
||||
const std::vector<int32_t>& opt_shape = std::vector<int32_t>(),
|
||||
const std::vector<int32_t>& max_shape = std::vector<int32_t>());
|
||||
|
||||
/// Set max_workspace_size for TensorRT, default 1<<30
|
||||
void SetTrtMaxWorkspaceSize(size_t trt_max_workspace_size);
|
||||
|
||||
/// Set max_batch_size for TensorRT, default 32
|
||||
void SetTrtMaxBatchSize(size_t max_batch_size);
|
||||
|
||||
/**
|
||||
* @brief Enable FP16 inference while using TensorRT backend. Notice: not all the GPU device support FP16, on those device doesn't support FP16, FastDeploy will fallback to FP32 automaticly
|
||||
*/
|
||||
void EnableTrtFP16();
|
||||
|
||||
/// Disable FP16 inference while using TensorRT backend
|
||||
void DisableTrtFP16();
|
||||
|
||||
/**
|
||||
* @brief Set cache file path while use TensorRT backend. Loadding a Paddle/ONNX model and initialize TensorRT will take a long time, by this interface it will save the tensorrt engine to `cache_file_path`, and load it directly while execute the code again
|
||||
*/
|
||||
void SetTrtCacheFile(const std::string& cache_file_path);
|
||||
|
||||
/**
|
||||
* @brief Enable pinned memory. Pinned memory can be utilized to speedup the data transfer between CPU and GPU. Currently it's only suppurted in TRT backend and Paddle Inference backend.
|
||||
*/
|
||||
void EnablePinnedMemory();
|
||||
|
||||
/**
|
||||
* @brief Disable pinned memory
|
||||
*/
|
||||
void DisablePinnedMemory();
|
||||
|
||||
/**
|
||||
* @brief Enable to collect shape in paddle trt backend
|
||||
*/
|
||||
void EnablePaddleTrtCollectShape();
|
||||
|
||||
/**
|
||||
* @brief Disable to collect shape in paddle trt backend
|
||||
*/
|
||||
void DisablePaddleTrtCollectShape();
|
||||
|
||||
/**
|
||||
* @brief Prevent ops running in paddle trt backend
|
||||
*/
|
||||
void DisablePaddleTrtOPs(const std::vector<std::string>& ops);
|
||||
|
||||
/*
|
||||
* @brief Set number of streams by the OpenVINO backends
|
||||
*/
|
||||
void SetOpenVINOStreams(int num_streams);
|
||||
|
||||
/** \Use Graphcore IPU to inference.
|
||||
*
|
||||
* \param[in] device_num the number of IPUs.
|
||||
@@ -331,16 +132,18 @@ struct FASTDEPLOY_DECL RuntimeOption {
|
||||
void UseIpu(int device_num = 1, int micro_batch_size = 1,
|
||||
bool enable_pipelining = false, int batches_per_step = 1);
|
||||
|
||||
/** \brief Set IPU config.
|
||||
*
|
||||
* \param[in] enable_fp16 enable fp16.
|
||||
* \param[in] replica_num the number of graph replication.
|
||||
* \param[in] available_memory_proportion the available memory proportion for matmul/conv.
|
||||
* \param[in] enable_half_partial enable fp16 partial for matmul, only work with fp16.
|
||||
*/
|
||||
void SetIpuConfig(bool enable_fp16 = false, int replica_num = 1,
|
||||
float available_memory_proportion = 1.0,
|
||||
bool enable_half_partial = false);
|
||||
/// Option to configure ONNX Runtime backend
|
||||
OrtBackendOption ort_option;
|
||||
/// Option to configure TensorRT backend
|
||||
TrtBackendOption trt_option;
|
||||
/// Option to configure Paddle Inference backend
|
||||
PaddleBackendOption paddle_infer_option;
|
||||
/// Option to configure Poros backend
|
||||
PorosBackendOption poros_option;
|
||||
/// Option to configure OpenVINO backend
|
||||
OpenVINOBackendOption openvino_option;
|
||||
/// Option to configure Paddle Lite backend
|
||||
LiteBackendOption paddle_lite_option;
|
||||
|
||||
/** \brief Set the profile mode as 'true'.
|
||||
*
|
||||
@@ -362,46 +165,9 @@ struct FASTDEPLOY_DECL RuntimeOption {
|
||||
benchmark_option.enable_profile = false;
|
||||
}
|
||||
|
||||
Backend backend = Backend::UNKNOWN;
|
||||
|
||||
// for cpu inference
|
||||
// default will let the backend choose their own default value
|
||||
int cpu_thread_num = -1;
|
||||
int device_id = 0;
|
||||
|
||||
Device device = Device::CPU;
|
||||
|
||||
void* external_stream_ = nullptr;
|
||||
|
||||
bool enable_pinned_memory = false;
|
||||
|
||||
/// Option to configure ONNX Runtime backend
|
||||
OrtBackendOption ort_option;
|
||||
|
||||
/// Option to configure TensorRT backend
|
||||
TrtBackendOption trt_option;
|
||||
|
||||
/// Option to configure Paddle Inference backend
|
||||
PaddleBackendOption paddle_infer_option;
|
||||
|
||||
// ======Only for PaddleTrt Backend=======
|
||||
std::vector<std::string> trt_disabled_ops_{};
|
||||
|
||||
/// Option to configure Poros backend
|
||||
PorosBackendOption poros_option;
|
||||
|
||||
/// Option to configure OpenVINO backend
|
||||
OpenVINOBackendOption openvino_option;
|
||||
|
||||
// ======Only for RKNPU2 Backend=======
|
||||
fastdeploy::rknpu2::CpuName rknpu2_cpu_name_ =
|
||||
fastdeploy::rknpu2::CpuName::RK3588;
|
||||
fastdeploy::rknpu2::CoreMask rknpu2_core_mask_ =
|
||||
fastdeploy::rknpu2::CoreMask::RKNN_NPU_CORE_AUTO;
|
||||
|
||||
|
||||
/// Option to configure Paddle Lite backend
|
||||
LiteBackendOption paddle_lite_option;
|
||||
/// Benchmark option
|
||||
benchmark::BenchmarkOption benchmark_option;
|
||||
|
||||
// If model_from_memory is true, the model_file and params_file is
|
||||
// binary stream in memory;
|
||||
@@ -412,8 +178,77 @@ struct FASTDEPLOY_DECL RuntimeOption {
|
||||
/// format of input model
|
||||
ModelFormat model_format = ModelFormat::PADDLE;
|
||||
|
||||
/// Benchmark option
|
||||
benchmark::BenchmarkOption benchmark_option;
|
||||
// for cpu inference
|
||||
// default will let the backend choose their own default value
|
||||
int cpu_thread_num = -1;
|
||||
int device_id = 0;
|
||||
Backend backend = Backend::UNKNOWN;
|
||||
|
||||
Device device = Device::CPU;
|
||||
|
||||
void* external_stream_ = nullptr;
|
||||
|
||||
bool enable_pinned_memory = false;
|
||||
|
||||
// ======Only for RKNPU2 Backend=======
|
||||
fastdeploy::rknpu2::CpuName rknpu2_cpu_name_ =
|
||||
fastdeploy::rknpu2::CpuName::RK3588;
|
||||
fastdeploy::rknpu2::CoreMask rknpu2_core_mask_ =
|
||||
fastdeploy::rknpu2::CoreMask::RKNN_NPU_CORE_AUTO;
|
||||
|
||||
// *** The belowing api are deprecated, will be removed in v1.2.0
|
||||
// *** Do not use it anymore
|
||||
|
||||
void SetPaddleMKLDNN(bool pd_mkldnn = true);
|
||||
void EnablePaddleToTrt();
|
||||
void DeletePaddleBackendPass(const std::string& delete_pass_name);
|
||||
void EnablePaddleLogInfo();
|
||||
void DisablePaddleLogInfo();
|
||||
void SetPaddleMKLDNNCacheSize(int size);
|
||||
void SetOpenVINODevice(const std::string& name = "CPU");
|
||||
void SetOpenVINOShapeInfo(
|
||||
const std::map<std::string, std::vector<int64_t>>& shape_info) {
|
||||
openvino_option.shape_infos = shape_info;
|
||||
}
|
||||
void SetOpenVINOCpuOperators(const std::vector<std::string>& operators) {
|
||||
openvino_option.SetCpuOperators(operators);
|
||||
}
|
||||
void SetLiteOptimizedModelDir(const std::string& optimized_model_dir);
|
||||
void SetLiteSubgraphPartitionPath(
|
||||
const std::string& nnadapter_subgraph_partition_config_path);
|
||||
void SetLiteSubgraphPartitionConfigBuffer(
|
||||
const std::string& nnadapter_subgraph_partition_config_buffer);
|
||||
void
|
||||
SetLiteContextProperties(const std::string& nnadapter_context_properties);
|
||||
void SetLiteModelCacheDir(const std::string& nnadapter_model_cache_dir);
|
||||
void SetLiteDynamicShapeInfo(
|
||||
const std::map<std::string, std::vector<std::vector<int64_t>>>&
|
||||
nnadapter_dynamic_shape_info);
|
||||
void SetLiteMixedPrecisionQuantizationConfigPath(
|
||||
const std::string& nnadapter_mixed_precision_quantization_config_path);
|
||||
void EnableLiteFP16();
|
||||
void DisableLiteFP16();
|
||||
void EnableLiteInt8();
|
||||
void DisableLiteInt8();
|
||||
void SetLitePowerMode(LitePowerMode mode);
|
||||
void SetTrtInputShape(
|
||||
const std::string& input_name, const std::vector<int32_t>& min_shape,
|
||||
const std::vector<int32_t>& opt_shape = std::vector<int32_t>(),
|
||||
const std::vector<int32_t>& max_shape = std::vector<int32_t>());
|
||||
void SetTrtMaxWorkspaceSize(size_t trt_max_workspace_size);
|
||||
void SetTrtMaxBatchSize(size_t max_batch_size);
|
||||
void EnableTrtFP16();
|
||||
void DisableTrtFP16();
|
||||
void SetTrtCacheFile(const std::string& cache_file_path);
|
||||
void EnablePinnedMemory();
|
||||
void DisablePinnedMemory();
|
||||
void EnablePaddleTrtCollectShape();
|
||||
void DisablePaddleTrtCollectShape();
|
||||
void DisablePaddleTrtOPs(const std::vector<std::string>& ops);
|
||||
void SetOpenVINOStreams(int num_streams);
|
||||
void SetOrtGraphOptLevel(int level = -1);
|
||||
void UsePaddleBackend();
|
||||
void UseLiteBackend();
|
||||
};
|
||||
|
||||
} // namespace fastdeploy
|
||||
|
||||
Reference in New Issue
Block a user