mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
[Doc] Add default values for public variables for external models (#441)
* first commit for yolov7 * pybind for yolov7 * CPP README.md * CPP README.md * modified yolov7.cc * README.md * python file modify * delete license in fastdeploy/ * repush the conflict part * README.md modified * README.md modified * file path modified * file path modified * file path modified * file path modified * file path modified * README modified * README modified * move some helpers to private * add examples for yolov7 * api.md modified * api.md modified * api.md modified * YOLOv7 * yolov7 release link * yolov7 release link * yolov7 release link * copyright * change some helpers to private * change variables to const and fix documents. * gitignore * Transfer some funtions to private member of class * Transfer some funtions to private member of class * Merge from develop (#9) * Fix compile problem in different python version (#26) * fix some usage problem in linux * Fix compile problem Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> * Add PaddleDetetion/PPYOLOE model support (#22) * add ppdet/ppyoloe * Add demo code and documents * add convert processor to vision (#27) * update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * fixed examples/CMakeLists.txt to avoid conflicts * add convert processor to vision * format examples/CMakeLists summary * Fix bug while the inference result is empty with YOLOv5 (#29) * Add multi-label function for yolov5 * Update README.md Update doc * Update fastdeploy_runtime.cc fix variable option.trt_max_shape wrong name * Update runtime_option.md Update resnet model dynamic shape setting name from images to x * Fix bug when inference result boxes are empty * Delete detection.py Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> * first commit for yolor * for merge * Develop (#11) * Fix compile problem in different python version (#26) * fix some usage problem in linux * Fix compile problem Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> * Add PaddleDetetion/PPYOLOE model support (#22) * add ppdet/ppyoloe * Add demo code and documents * add convert processor to vision (#27) * update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * fixed examples/CMakeLists.txt to avoid conflicts * add convert processor to vision * format examples/CMakeLists summary * Fix bug while the inference result is empty with YOLOv5 (#29) * Add multi-label function for yolov5 * Update README.md Update doc * Update fastdeploy_runtime.cc fix variable option.trt_max_shape wrong name * Update runtime_option.md Update resnet model dynamic shape setting name from images to x * Fix bug when inference result boxes are empty * Delete detection.py Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> * Yolor (#16) * Develop (#11) (#12) * Fix compile problem in different python version (#26) * fix some usage problem in linux * Fix compile problem Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> * Add PaddleDetetion/PPYOLOE model support (#22) * add ppdet/ppyoloe * Add demo code and documents * add convert processor to vision (#27) * update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * fixed examples/CMakeLists.txt to avoid conflicts * add convert processor to vision * format examples/CMakeLists summary * Fix bug while the inference result is empty with YOLOv5 (#29) * Add multi-label function for yolov5 * Update README.md Update doc * Update fastdeploy_runtime.cc fix variable option.trt_max_shape wrong name * Update runtime_option.md Update resnet model dynamic shape setting name from images to x * Fix bug when inference result boxes are empty * Delete detection.py Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> * Develop (#13) * Fix compile problem in different python version (#26) * fix some usage problem in linux * Fix compile problem Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> * Add PaddleDetetion/PPYOLOE model support (#22) * add ppdet/ppyoloe * Add demo code and documents * add convert processor to vision (#27) * update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * fixed examples/CMakeLists.txt to avoid conflicts * add convert processor to vision * format examples/CMakeLists summary * Fix bug while the inference result is empty with YOLOv5 (#29) * Add multi-label function for yolov5 * Update README.md Update doc * Update fastdeploy_runtime.cc fix variable option.trt_max_shape wrong name * Update runtime_option.md Update resnet model dynamic shape setting name from images to x * Fix bug when inference result boxes are empty * Delete detection.py Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> * documents * documents * documents * documents * documents * documents * documents * documents * documents * documents * documents * documents * Develop (#14) * Fix compile problem in different python version (#26) * fix some usage problem in linux * Fix compile problem Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> * Add PaddleDetetion/PPYOLOE model support (#22) * add ppdet/ppyoloe * Add demo code and documents * add convert processor to vision (#27) * update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * fixed examples/CMakeLists.txt to avoid conflicts * add convert processor to vision * format examples/CMakeLists summary * Fix bug while the inference result is empty with YOLOv5 (#29) * Add multi-label function for yolov5 * Update README.md Update doc * Update fastdeploy_runtime.cc fix variable option.trt_max_shape wrong name * Update runtime_option.md Update resnet model dynamic shape setting name from images to x * Fix bug when inference result boxes are empty * Delete detection.py Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> Co-authored-by: Jason <928090362@qq.com> * add is_dynamic for YOLO series (#22) * modify ppmatting backend and docs * modify ppmatting docs * fix the PPMatting size problem * fix LimitShort's log * retrigger ci * modify PPMatting docs * modify the way for dealing with LimitShort * add python comments for external models * modify resnet c++ comments * modify C++ comments for external models * modify python comments and add result class comments * fix comments compile error * modify result.h comments * add default values for public variables in comments Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> Co-authored-by: Jason <928090362@qq.com>
This commit is contained in:
@@ -56,21 +56,21 @@ class ResNet(FastDeployModel):
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Returns the preprocess image size
|
||||
Returns the preprocess image size, default size = [224, 224];
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
@property
|
||||
def mean_vals(self):
|
||||
"""
|
||||
Returns the mean value of normlization
|
||||
Returns the mean value of normlization, default mean_vals = [0.485f, 0.456f, 0.406f];
|
||||
"""
|
||||
return self._model.mean_vals
|
||||
|
||||
@property
|
||||
def std_vals(self):
|
||||
"""
|
||||
Returns the std value of normlization
|
||||
Returns the std value of normlization, default std_vals = [0.229f, 0.224f, 0.225f];
|
||||
"""
|
||||
return self._model.std_vals
|
||||
|
||||
|
@@ -52,7 +52,7 @@ class YOLOv5Cls(FastDeployModel):
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Returns the preprocess image size
|
||||
Returns the preprocess image size, default is (224, 224)
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
|
@@ -56,7 +56,7 @@ class NanoDetPlus(FastDeployModel):
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height)
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (320, 320)
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
|
@@ -56,7 +56,8 @@ class ScaledYOLOv4(FastDeployModel):
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height)
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [640, 640]
|
||||
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
|
@@ -56,7 +56,7 @@ class YOLOR(FastDeployModel):
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height)
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [640, 640]
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
|
@@ -81,7 +81,7 @@ class YOLOv5(FastDeployModel):
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height)
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [640, 640]
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
@@ -117,6 +117,9 @@ class YOLOv5(FastDeployModel):
|
||||
|
||||
@property
|
||||
def multi_label(self):
|
||||
"""
|
||||
Argument for image preprocessing step, for different strategies to get boxes when postprocessing, default True
|
||||
"""
|
||||
return self._model.multi_label
|
||||
|
||||
@size.setter
|
||||
|
@@ -56,7 +56,7 @@ class YOLOv5Lite(FastDeployModel):
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height)
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [640, 640]
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
@@ -96,7 +96,8 @@ class YOLOv5Lite(FastDeployModel):
|
||||
whether the model_file was exported with decode module.
|
||||
The official YOLOv5Lite/export.py script will export ONNX file without decode module.
|
||||
Please set it 'true' manually if the model file was exported with decode module.
|
||||
false : ONNX files without decode module. true : ONNX file with decode module.
|
||||
False : ONNX files without decode module. True : ONNX file with decode module.
|
||||
default False
|
||||
"""
|
||||
return self._model.is_decode_exported
|
||||
|
||||
|
@@ -56,7 +56,7 @@ class YOLOv6(FastDeployModel):
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height)
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [640, 640]
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
|
@@ -56,7 +56,7 @@ class YOLOv7(FastDeployModel):
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height)
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [640, 640]
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
|
@@ -54,7 +54,7 @@ class YOLOv7End2EndORT(FastDeployModel):
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height)
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [640, 640]
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
|
@@ -54,7 +54,7 @@ class YOLOv7End2EndTRT(FastDeployModel):
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height)
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [640, 640]
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
|
@@ -56,7 +56,7 @@ class YOLOX(FastDeployModel):
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height)
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [640, 640]
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
@@ -71,6 +71,7 @@ class YOLOX(FastDeployModel):
|
||||
whether the model_file was exported with decode module.
|
||||
The official YOLOX/tools/export_onnx.py script will export ONNX file without decode module.
|
||||
Please set it 'true' manually if the model file was exported with decode module.
|
||||
Defalut False.
|
||||
"""
|
||||
return self._model.is_decode_exported
|
||||
|
||||
|
@@ -56,7 +56,7 @@ class RetinaFace(FastDeployModel):
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height)
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (640, 640)
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
@@ -77,7 +77,7 @@ class RetinaFace(FastDeployModel):
|
||||
@property
|
||||
def min_sizes(self):
|
||||
"""
|
||||
Argument for image postprocessing step, min sizes, width and height for each anchor
|
||||
Argument for image postprocessing step, min sizes, width and height for each anchor, default min_sizes = [[16, 32], [64, 128], [256, 512]]
|
||||
"""
|
||||
return self._model.min_sizes
|
||||
|
||||
|
@@ -56,7 +56,7 @@ class SCRFD(FastDeployModel):
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height)
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (640, 640)
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
@@ -87,22 +87,40 @@ class SCRFD(FastDeployModel):
|
||||
|
||||
@property
|
||||
def downsample_strides(self):
|
||||
"""
|
||||
Argument for image postprocessing step,
|
||||
downsample strides (namely, steps) for SCRFD to generate anchors,
|
||||
will take (8,16,32) as default values
|
||||
"""
|
||||
return self._model.downsample_strides
|
||||
|
||||
@property
|
||||
def landmarks_per_face(self):
|
||||
"""
|
||||
Argument for image postprocessing step, landmarks_per_face, default 5 in SCRFD
|
||||
"""
|
||||
return self._model.landmarks_per_face
|
||||
|
||||
@property
|
||||
def use_kps(self):
|
||||
"""
|
||||
Argument for image postprocessing step,
|
||||
the outputs of onnx file with key points features or not, default true
|
||||
"""
|
||||
return self._model.use_kps
|
||||
|
||||
@property
|
||||
def max_nms(self):
|
||||
"""
|
||||
Argument for image postprocessing step, the upperbond number of boxes processed by nms, default 30000
|
||||
"""
|
||||
return self._model.max_nms
|
||||
|
||||
@property
|
||||
def num_anchors(self):
|
||||
"""
|
||||
Argument for image postprocessing step, anchor number of each stride, default 2
|
||||
"""
|
||||
return self._model.num_anchors
|
||||
|
||||
@size.setter
|
||||
|
@@ -56,7 +56,7 @@ class UltraFace(FastDeployModel):
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height)
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (320, 240)
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
|
@@ -56,7 +56,7 @@ class YOLOv5Face(FastDeployModel):
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height)
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [640,640]
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
|
@@ -52,35 +52,36 @@ class AdaFace(FastDeployModel):
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height)
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (112, 112)
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
@property
|
||||
def alpha(self):
|
||||
"""
|
||||
Argument for image preprocessing step, alpha value for normalization
|
||||
Argument for image preprocessing step, alpha value for normalization, default alpha = [1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f]
|
||||
"""
|
||||
return self._model.alpha
|
||||
|
||||
@property
|
||||
def beta(self):
|
||||
"""
|
||||
Argument for image preprocessing step, beta value for normalization
|
||||
Argument for image preprocessing step, beta values for normalization, default beta = {-1.f, -1.f, -1.f}
|
||||
|
||||
"""
|
||||
return self._model.beta
|
||||
|
||||
@property
|
||||
def swap_rb(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default true.
|
||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default True.
|
||||
"""
|
||||
return self._model.swap_rb
|
||||
|
||||
@property
|
||||
def l2_normalize(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to apply l2 normalize to embedding values, default;
|
||||
Argument for image preprocessing step, whether to apply l2 normalize to embedding values, default False;
|
||||
"""
|
||||
return self._model.l2_normalize
|
||||
|
||||
|
@@ -54,35 +54,35 @@ class ArcFace(FastDeployModel):
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height)
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (112, 112)
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
@property
|
||||
def alpha(self):
|
||||
"""
|
||||
Argument for image preprocessing step, alpha value for normalization
|
||||
Argument for image preprocessing step, alpha value for normalization, default alpha = [1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f]
|
||||
"""
|
||||
return self._model.alpha
|
||||
|
||||
@property
|
||||
def beta(self):
|
||||
"""
|
||||
Argument for image preprocessing step, beta value for normalization
|
||||
Argument for image preprocessing step, beta values for normalization, default beta = {-1.f, -1.f, -1.f}
|
||||
"""
|
||||
return self._model.beta
|
||||
|
||||
@property
|
||||
def swap_rb(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default true.
|
||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default True.
|
||||
"""
|
||||
return self._model.swap_rb
|
||||
|
||||
@property
|
||||
def l2_normalize(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to apply l2 normalize to embedding values, default;
|
||||
Argument for image preprocessing step, whether to apply l2 normalize to embedding values, default False;
|
||||
"""
|
||||
return self._model.l2_normalize
|
||||
|
||||
|
@@ -53,28 +53,28 @@ class CosFace(FastDeployModel):
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height)
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (112, 112)
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
@property
|
||||
def alpha(self):
|
||||
"""
|
||||
Argument for image preprocessing step, alpha value for normalization
|
||||
Argument for image preprocessing step, alpha value for normalization, default alpha = [1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f]
|
||||
"""
|
||||
return self._model.alpha
|
||||
|
||||
@property
|
||||
def beta(self):
|
||||
"""
|
||||
Argument for image preprocessing step, beta value for normalization
|
||||
Argument for image preprocessing step, beta values for normalization, default beta = {-1.f, -1.f, -1.f}
|
||||
"""
|
||||
return self._model.beta
|
||||
|
||||
@property
|
||||
def swap_rb(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default true.
|
||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default True.
|
||||
"""
|
||||
return self._model.swap_rb
|
||||
|
||||
|
@@ -53,28 +53,28 @@ class InsightFaceRecognitionModel(FastDeployModel):
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height)
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (112, 112)
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
@property
|
||||
def alpha(self):
|
||||
"""
|
||||
Argument for image preprocessing step, alpha value for normalization
|
||||
Argument for image preprocessing step, alpha value for normalization, default alpha = [1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f]
|
||||
"""
|
||||
return self._model.alpha
|
||||
|
||||
@property
|
||||
def beta(self):
|
||||
"""
|
||||
Argument for image preprocessing step, beta value for normalization
|
||||
Argument for image preprocessing step, beta values for normalization, default beta = {-1.f, -1.f, -1.f}
|
||||
"""
|
||||
return self._model.beta
|
||||
|
||||
@property
|
||||
def swap_rb(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default true.
|
||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default True.
|
||||
"""
|
||||
return self._model.swap_rb
|
||||
|
||||
|
@@ -53,28 +53,28 @@ class PartialFC(FastDeployModel):
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height)
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (112, 112)
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
@property
|
||||
def alpha(self):
|
||||
"""
|
||||
Argument for image preprocessing step, alpha value for normalization
|
||||
Argument for image preprocessing step, alpha value for normalization, default alpha = [1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f]
|
||||
"""
|
||||
return self._model.alpha
|
||||
|
||||
@property
|
||||
def beta(self):
|
||||
"""
|
||||
Argument for image preprocessing step, beta value for normalization
|
||||
Argument for image preprocessing step, beta values for normalization, default beta = {-1.f, -1.f, -1.f}
|
||||
"""
|
||||
return self._model.beta
|
||||
|
||||
@property
|
||||
def swap_rb(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default true.
|
||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default True.
|
||||
"""
|
||||
return self._model.swap_rb
|
||||
|
||||
|
@@ -53,28 +53,28 @@ class VPL(FastDeployModel):
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height)
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (112, 112)
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
@property
|
||||
def alpha(self):
|
||||
"""
|
||||
Argument for image preprocessing step, alpha value for normalization
|
||||
Argument for image preprocessing step, alpha value for normalization, default alpha = [1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f]
|
||||
"""
|
||||
return self._model.alpha
|
||||
|
||||
@property
|
||||
def beta(self):
|
||||
"""
|
||||
Argument for image preprocessing step, beta value for normalization
|
||||
Argument for image preprocessing step, beta values for normalization, default beta = {-1.f, -1.f, -1.f}
|
||||
"""
|
||||
return self._model.beta
|
||||
|
||||
@property
|
||||
def swap_rb(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default true.
|
||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default True.
|
||||
"""
|
||||
return self._model.swap_rb
|
||||
|
||||
|
@@ -53,28 +53,28 @@ class MODNet(FastDeployModel):
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height)
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [256,256]
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
@property
|
||||
def alpha(self):
|
||||
"""
|
||||
Argument for image preprocessing step, alpha value for normalization
|
||||
Argument for image preprocessing step, alpha value for normalization, default alpha = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f}
|
||||
"""
|
||||
return self._model.alpha
|
||||
|
||||
@property
|
||||
def beta(self):
|
||||
"""
|
||||
Argument for image preprocessing step, beta value for normalization
|
||||
Argument for image preprocessing step, beta value for normalization, default beta = {-1.f, -1.f, -1.f}
|
||||
"""
|
||||
return self._model.beta
|
||||
|
||||
@property
|
||||
def swap_rb(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default true.
|
||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default True.
|
||||
"""
|
||||
return self._model.swap_rb
|
||||
|
||||
|
Reference in New Issue
Block a user