[Feature] remove dependency on enable_mm and refine multimodal's code (#3014)

* remove dependency on enable_mm

* fix codestyle check error

* fix codestyle check error

* update docs

* resolve conflicts on model config

* fix unit test error

* fix code style check error

---------

Co-authored-by: shige <1021937542@qq.com>
Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
This commit is contained in:
ApplEOFDiscord
2025-08-01 20:01:18 +08:00
committed by GitHub
parent 243394044d
commit b71cbb466d
24 changed files with 118 additions and 29 deletions

View File

@@ -0,0 +1,127 @@
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import base64
from io import BytesIO
from pathlib import Path
import numpy as np
import numpy.typing as npt
from .base import MediaIO
# TODO 多模数据处理
# try:
# import librosa
# except ImportError:
# librosa = PlaceholderModule("librosa") # type: ignore[assignment]
# try:
# import soundfile
# except ImportError:
# soundfile = PlaceholderModule("soundfile") # type: ignore[assignment]
def resample_audio(
audio: npt.NDArray[np.floating],
*,
orig_sr: float,
target_sr: float,
) -> npt.NDArray[np.floating]:
"""
将音频数据从原始采样率(`orig_sr`)重采样到目标采样率(`target_sr`)。
Args:
audio (npt.NDArray[np.floating]): 带有单通道浮点型音频数据的 numpy ndarray形状为 `(samples,)`。
orig_sr (float): 音频数据的原始采样率。
target_sr (float): 需要转换到的目标采样率。
Returns:
npt.NDArray[np.floating]: 带有单通道浮点型音频数据的 numpy ndarray形状为 `(samples,)`,已经被重采样到目标采样率。
Raises:
None.
"""
import librosa
return librosa.resample(audio, orig_sr=orig_sr, target_sr=target_sr)
class AudioMediaIO(MediaIO[tuple[npt.NDArray, float]]):
def load_bytes(self, data: bytes) -> tuple[npt.NDArray, float]:
"""
加载字节数据,返回音频信号和采样率。
参数:
data (bytes) - 字节数据,包含音频文件的内容。
返回值tuple
(array, float) - 第一个元素是一个numpy数组表示音频信号第二个元素是一个浮点数表示采样率。
如果解码失败,则返回 None。
"""
import librosa
return librosa.load(BytesIO(data), sr=None)
def load_base64(
self,
media_type: str,
data: str,
) -> tuple[npt.NDArray, float]:
"""
将 base64 编码的字符串转换为 numpy 数组和尺度。
Args:
media_type (str): 媒体类型,例如 'image/jpeg''image/png' 等。
data (str): base64 编码的字符串,表示图像或其他二进制数据。
Returns:
tuple[npt.NDArray, float]: 包含以下两个元素:
- npt.NDArray: 形状为HWC的 numpy 数组,表示图像或其他二进制数据。
- float: 图像的尺度,单位为像素。
Raises:
ValueError: 当 media_type 不是有效的媒体类型时引发。
"""
return self.load_bytes(base64.b64decode(data))
def load_file(self, filepath: Path) -> tuple[npt.NDArray, float]:
"""
加载音频文件,返回音频数据和采样率。
参数:
filepath (Path): 音频文件路径Path类型
返回值:
tuple[npt.NDArray, float]包含两个元素的元组第一个是音频数据npt.NDArray类型
第二个是采样率float类型
"""
import librosa
return librosa.load(filepath, sr=None)
def encode_base64(self, media: tuple[npt.NDArray, float]) -> str:
"""
将音频数据和采样率转换为Base64编码的字符串。
参数:
media (tuple[numpy.ndarray, float]): 包含音频数据和采样率的元组其中音频数据是一个numpy数组采样率是一个浮点数。
返回值 (str): Base64编码的字符串表示音频数据和采样率。
"""
audio, sr = media
with BytesIO() as buffer:
import soundfile
soundfile.write(buffer, audio, sr, format="WAV")
data = buffer.getvalue()
return base64.b64encode(data).decode("utf-8")