[Benchmark] Add ppocr && ppseg benchmark (#1344)

* add GPL lisence

* add GPL-3.0 lisence

* add GPL-3.0 lisence

* add GPL-3.0 lisence

* support yolov8

* add pybind for yolov8

* add yolov8 readme

* add cpp benchmark

* add cpu and gpu mem

* public part split

* add runtime mode

* fixed bugs

* add cpu_thread_nums

* deal with comments

* deal with comments

* deal with comments

* rm useless code

* add FASTDEPLOY_DECL

* add FASTDEPLOY_DECL

* fixed for windows

* mv rss to pss

* mv rss to pss

* Update utils.cc

* use thread to collect mem

* Add ResourceUsageMonitor

* rm useless code

* fixed bug

* fixed typo

* update ResourceUsageMonitor

* fixed bug

* fixed bug

* add note for ResourceUsageMonitor

* deal with comments

* add macros

* deal with comments

* deal with comments

* deal with comments

* re-lint

* rm pmap and use mem api

* rm pmap and use mem api

* add mem api

* Add PrintBenchmarkInfo func

* Add PrintBenchmarkInfo func

* Add PrintBenchmarkInfo func

* deal with comments

* fixed enable_paddle_to_trt

* add log for paddle_trt

* support ppcls benchmark

* use new trt option api

* update benchmark info

* simplify benchmark.cc

* simplify benchmark.cc

* deal with comments

* Add ppseg && ppocr benchmark

* add OCR rec img

* add ocr benchmark

* fixed trt shape

* add trt shape

* resolve conflict

* add ENABLE_BENCHMARK define

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
This commit is contained in:
WJJ1995
2023-02-20 15:59:27 +08:00
committed by GitHub
parent 1b499f3de2
commit b6658b8094
11 changed files with 182 additions and 22 deletions

6
benchmark/cpp/CMakeLists.txt Normal file → Executable file
View File

@@ -12,15 +12,21 @@ add_executable(benchmark_yolov5 ${PROJECT_SOURCE_DIR}/benchmark_yolov5.cc)
add_executable(benchmark_ppyolov8 ${PROJECT_SOURCE_DIR}/benchmark_ppyolov8.cc) add_executable(benchmark_ppyolov8 ${PROJECT_SOURCE_DIR}/benchmark_ppyolov8.cc)
add_executable(benchmark_ppcls ${PROJECT_SOURCE_DIR}/benchmark_ppcls.cc) add_executable(benchmark_ppcls ${PROJECT_SOURCE_DIR}/benchmark_ppcls.cc)
add_executable(benchmark_precision_ppyolov8 ${PROJECT_SOURCE_DIR}/benchmark_precision_ppyolov8.cc) add_executable(benchmark_precision_ppyolov8 ${PROJECT_SOURCE_DIR}/benchmark_precision_ppyolov8.cc)
add_executable(benchmark_ppseg ${PROJECT_SOURCE_DIR}/benchmark_ppseg.cc)
add_executable(benchmark_ppocr ${PROJECT_SOURCE_DIR}/benchmark_ppocr.cc)
if(UNIX AND (NOT APPLE) AND (NOT ANDROID)) if(UNIX AND (NOT APPLE) AND (NOT ANDROID))
target_link_libraries(benchmark_yolov5 ${FASTDEPLOY_LIBS} gflags pthread) target_link_libraries(benchmark_yolov5 ${FASTDEPLOY_LIBS} gflags pthread)
target_link_libraries(benchmark_ppyolov8 ${FASTDEPLOY_LIBS} gflags pthread) target_link_libraries(benchmark_ppyolov8 ${FASTDEPLOY_LIBS} gflags pthread)
target_link_libraries(benchmark_ppcls ${FASTDEPLOY_LIBS} gflags pthread) target_link_libraries(benchmark_ppcls ${FASTDEPLOY_LIBS} gflags pthread)
target_link_libraries(benchmark_precision_ppyolov8 ${FASTDEPLOY_LIBS} gflags pthread) target_link_libraries(benchmark_precision_ppyolov8 ${FASTDEPLOY_LIBS} gflags pthread)
target_link_libraries(benchmark_ppseg ${FASTDEPLOY_LIBS} gflags pthread)
target_link_libraries(benchmark_ppocr ${FASTDEPLOY_LIBS} gflags pthread)
else() else()
target_link_libraries(benchmark_yolov5 ${FASTDEPLOY_LIBS} gflags) target_link_libraries(benchmark_yolov5 ${FASTDEPLOY_LIBS} gflags)
target_link_libraries(benchmark_ppyolov8 ${FASTDEPLOY_LIBS} gflags) target_link_libraries(benchmark_ppyolov8 ${FASTDEPLOY_LIBS} gflags)
target_link_libraries(benchmark_ppcls ${FASTDEPLOY_LIBS} gflags) target_link_libraries(benchmark_ppcls ${FASTDEPLOY_LIBS} gflags)
target_link_libraries(benchmark_precision_ppyolov8 ${FASTDEPLOY_LIBS} gflags) target_link_libraries(benchmark_precision_ppyolov8 ${FASTDEPLOY_LIBS} gflags)
target_link_libraries(benchmark_ppseg ${FASTDEPLOY_LIBS} gflags)
target_link_libraries(benchmark_ppocr ${FASTDEPLOY_LIBS} gflags)
endif() endif()

View File

@@ -17,6 +17,7 @@
#include "option.h" #include "option.h"
int main(int argc, char* argv[]) { int main(int argc, char* argv[]) {
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION)
// Initialization // Initialization
auto option = fastdeploy::RuntimeOption(); auto option = fastdeploy::RuntimeOption();
if (!CreateRuntimeOption(&option, argc, argv, true)) { if (!CreateRuntimeOption(&option, argc, argv, true)) {
@@ -24,7 +25,9 @@ int main(int argc, char* argv[]) {
} }
auto im = cv::imread(FLAGS_image); auto im = cv::imread(FLAGS_image);
// Set max_batch_size 1 for best performance // Set max_batch_size 1 for best performance
option.trt_option.max_batch_size = 1; if (FLAGS_backend == "paddle_trt") {
option.trt_option.max_batch_size = 1;
}
auto model_file = FLAGS_model + sep + "inference.pdmodel"; auto model_file = FLAGS_model + sep + "inference.pdmodel";
auto params_file = FLAGS_model + sep + "inference.pdiparams"; auto params_file = FLAGS_model + sep + "inference.pdiparams";
auto config_file = FLAGS_model + sep + "inference_cls.yaml"; auto config_file = FLAGS_model + sep + "inference_cls.yaml";
@@ -32,5 +35,6 @@ int main(int argc, char* argv[]) {
model_file, params_file, config_file, option); model_file, params_file, config_file, option);
fastdeploy::vision::ClassifyResult res; fastdeploy::vision::ClassifyResult res;
BENCHMARK_MODEL(model_ppcls, model_ppcls.Predict(im, &res)) BENCHMARK_MODEL(model_ppcls, model_ppcls.Predict(im, &res))
#endif
return 0; return 0;
} }

View File

@@ -0,0 +1,90 @@
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "flags.h"
#include "macros.h"
#include "option.h"
int main(int argc, char* argv[]) {
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION)
// Initialization
auto option = fastdeploy::RuntimeOption();
if (!CreateRuntimeOption(&option, argc, argv, true)) {
return -1;
}
auto im = cv::imread(FLAGS_image);
auto im_rec = cv::imread(FLAGS_image_rec);
// Detection Model
auto det_model_file =
FLAGS_model + sep + FLAGS_det_model + sep + "inference.pdmodel";
auto det_params_file =
FLAGS_model + sep + FLAGS_det_model + sep + "inference.pdiparams";
// Classification Model
auto cls_model_file =
FLAGS_model + sep + FLAGS_cls_model + sep + "inference.pdmodel";
auto cls_params_file =
FLAGS_model + sep + FLAGS_cls_model + sep + "inference.pdiparams";
// Recognition Model
auto rec_model_file =
FLAGS_model + sep + FLAGS_rec_model + sep + "inference.pdmodel";
auto rec_params_file =
FLAGS_model + sep + FLAGS_rec_model + sep + "inference.pdiparams";
auto rec_label_file = FLAGS_rec_label_file;
if (FLAGS_backend == "paddle_trt") {
option.paddle_infer_option.collect_trt_shape = true;
}
auto det_option = option;
auto cls_option = option;
auto rec_option = option;
if (FLAGS_backend == "paddle_trt" || FLAGS_backend == "trt") {
det_option.trt_option.SetShape("x", {1, 3, 64, 64}, {1, 3, 640, 640},
{1, 3, 960, 960});
cls_option.trt_option.SetShape("x", {1, 3, 48, 10}, {4, 3, 48, 320},
{8, 3, 48, 1024});
rec_option.trt_option.SetShape("x", {1, 3, 48, 10}, {4, 3, 48, 320},
{8, 3, 48, 2304});
}
auto det_model = fastdeploy::vision::ocr::DBDetector(
det_model_file, det_params_file, det_option);
auto cls_model = fastdeploy::vision::ocr::Classifier(
cls_model_file, cls_params_file, cls_option);
auto rec_model = fastdeploy::vision::ocr::Recognizer(
rec_model_file, rec_params_file, rec_label_file, rec_option);
// Only for runtime
if (FLAGS_profile_mode == "runtime") {
std::vector<std::array<int, 8>> boxes_result;
std::cout << "====Detection model====" << std::endl;
BENCHMARK_MODEL(det_model, det_model.Predict(im, &boxes_result));
int32_t cls_label;
float cls_score;
std::cout << "====Classification model====" << std::endl;
BENCHMARK_MODEL(cls_model,
cls_model.Predict(im_rec, &cls_label, &cls_score));
std::string text;
float rec_score;
std::cout << "====Recognization model====" << std::endl;
BENCHMARK_MODEL(rec_model, rec_model.Predict(im_rec, &text, &rec_score));
}
auto model_ppocrv3 =
fastdeploy::pipeline::PPOCRv3(&det_model, &cls_model, &rec_model);
fastdeploy::vision::OCRResult res;
if (FLAGS_profile_mode == "end2end") {
BENCHMARK_MODEL(model_ppocrv3, model_ppocrv3.Predict(im, &res))
}
auto vis_im = fastdeploy::vision::VisOcr(im, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
#endif
return 0;
}

View File

@@ -0,0 +1,46 @@
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "flags.h"
#include "macros.h"
#include "option.h"
int main(int argc, char* argv[]) {
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION)
// Initialization
auto option = fastdeploy::RuntimeOption();
if (!CreateRuntimeOption(&option, argc, argv, true)) {
return -1;
}
auto im = cv::imread(FLAGS_image);
auto model_file = FLAGS_model + sep + "model.pdmodel";
auto params_file = FLAGS_model + sep + "model.pdiparams";
auto config_file = FLAGS_model + sep + "deploy.yaml";
if (FLAGS_backend == "paddle_trt") {
option.paddle_infer_option.collect_trt_shape = true;
}
if (FLAGS_backend == "paddle_trt" || FLAGS_backend == "trt") {
option.trt_option.SetShape("x", {1, 3, 192, 192}, {1, 3, 192, 192},
{1, 3, 192, 192});
}
auto model_ppseg = fastdeploy::vision::segmentation::PaddleSegModel(
model_file, params_file, config_file, option);
fastdeploy::vision::SegmentationResult res;
BENCHMARK_MODEL(model_ppseg, model_ppseg.Predict(im, &res))
auto vis_im = fastdeploy::vision::VisSegmentation(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
#endif
return 0;
}

2
benchmark/cpp/benchmark_ppyolov8.cc Normal file → Executable file
View File

@@ -17,6 +17,7 @@
#include "option.h" #include "option.h"
int main(int argc, char* argv[]) { int main(int argc, char* argv[]) {
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION)
// Initialization // Initialization
auto option = fastdeploy::RuntimeOption(); auto option = fastdeploy::RuntimeOption();
if (!CreateRuntimeOption(&option, argc, argv, true)) { if (!CreateRuntimeOption(&option, argc, argv, true)) {
@@ -33,5 +34,6 @@ int main(int argc, char* argv[]) {
auto vis_im = fastdeploy::vision::VisDetection(im, res); auto vis_im = fastdeploy::vision::VisDetection(im, res);
cv::imwrite("vis_result.jpg", vis_im); cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl; std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
#endif
return 0; return 0;
} }

2
benchmark/cpp/benchmark_yolov5.cc Normal file → Executable file
View File

@@ -17,6 +17,7 @@
#include "option.h" #include "option.h"
int main(int argc, char* argv[]) { int main(int argc, char* argv[]) {
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION)
// Initialization // Initialization
auto option = fastdeploy::RuntimeOption(); auto option = fastdeploy::RuntimeOption();
if (!CreateRuntimeOption(&option, argc, argv, true)) { if (!CreateRuntimeOption(&option, argc, argv, true)) {
@@ -30,5 +31,6 @@ int main(int argc, char* argv[]) {
auto vis_im = fastdeploy::vision::VisDetection(im, res); auto vis_im = fastdeploy::vision::VisDetection(im, res);
cv::imwrite("vis_result.jpg", vis_im); cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl; std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
#endif
return 0; return 0;
} }

View File

@@ -44,6 +44,12 @@ DEFINE_bool(
DEFINE_bool( DEFINE_bool(
collect_memory_info, false, "Whether to collect memory info"); collect_memory_info, false, "Whether to collect memory info");
DEFINE_int32(sampling_interval, 50, "How often to collect memory info(ms)."); DEFINE_int32(sampling_interval, 50, "How often to collect memory info(ms).");
// Only for ppocr
DEFINE_string(det_model, "", "Path of Detection model of PPOCR.");
DEFINE_string(cls_model, "", "Path of Classification model of PPOCR.");
DEFINE_string(rec_model, "", "Path of Recognization model of PPOCR.");
DEFINE_string(rec_label_file, "", "Path of Recognization label file of PPOCR.");
DEFINE_string(image_rec, "", "Path of Recognization img file of PPOCR.");
static void PrintUsage() { static void PrintUsage() {
std::cout << "Usage: infer_demo --model model_path --image img_path --device " std::cout << "Usage: infer_demo --model model_path --image img_path --device "
@@ -60,6 +66,10 @@ static void PrintBenchmarkInfo() {
// Get model name // Get model name
std::vector<std::string> model_names; std::vector<std::string> model_names;
fastdeploy::benchmark::Split(FLAGS_model, model_names, sep); fastdeploy::benchmark::Split(FLAGS_model, model_names, sep);
if (model_names.empty()) {
std::cout << "Directory of the inference model is invalid!!!" << std::endl;
return;
}
// Save benchmark info // Save benchmark info
std::stringstream ss; std::stringstream ss;
ss.precision(3); ss.precision(3);

View File

@@ -38,7 +38,7 @@ def parse_arguments():
parser.add_argument( parser.add_argument(
"--rec_label_file", "--rec_label_file",
required=True, required=True,
help="Path of Recognization model of PPOCR.") help="Path of Recognization label file of PPOCR.")
parser.add_argument( parser.add_argument(
"--image", type=str, required=False, help="Path of test image file.") "--image", type=str, required=False, help="Path of test image file.")
parser.add_argument( parser.add_argument(
@@ -272,19 +272,19 @@ if __name__ == '__main__':
if "OCRv2" in args.model_dir: if "OCRv2" in args.model_dir:
det_option = option det_option = option
if args.backend in ["trt", "paddle_trt"]: if args.backend in ["trt", "paddle_trt"]:
det_option.set_trt_input_shape( det_option.trt_option.set_shape(
"x", [1, 3, 64, 64], [1, 3, 640, 640], [1, 3, 960, 960]) "x", [1, 3, 64, 64], [1, 3, 640, 640], [1, 3, 960, 960])
det_model = fd.vision.ocr.DBDetector( det_model = fd.vision.ocr.DBDetector(
det_model_file, det_params_file, runtime_option=det_option) det_model_file, det_params_file, runtime_option=det_option)
cls_option = option cls_option = option
if args.backend in ["trt", "paddle_trt"]: if args.backend in ["trt", "paddle_trt"]:
cls_option.set_trt_input_shape( cls_option.trt_option.set_shape(
"x", [1, 3, 48, 10], [10, 3, 48, 320], [64, 3, 48, 1024]) "x", [1, 3, 48, 10], [10, 3, 48, 320], [64, 3, 48, 1024])
cls_model = fd.vision.ocr.Classifier( cls_model = fd.vision.ocr.Classifier(
cls_model_file, cls_params_file, runtime_option=cls_option) cls_model_file, cls_params_file, runtime_option=cls_option)
rec_option = option rec_option = option
if args.backend in ["trt", "paddle_trt"]: if args.backend in ["trt", "paddle_trt"]:
rec_option.set_trt_input_shape( rec_option.trt_option.set_shape(
"x", [1, 3, 32, 10], [10, 3, 32, 320], [32, 3, 32, 2304]) "x", [1, 3, 32, 10], [10, 3, 32, 320], [32, 3, 32, 2304])
rec_model = fd.vision.ocr.Recognizer( rec_model = fd.vision.ocr.Recognizer(
rec_model_file, rec_model_file,
@@ -296,19 +296,19 @@ if __name__ == '__main__':
elif "OCRv3" in args.model_dir: elif "OCRv3" in args.model_dir:
det_option = option det_option = option
if args.backend in ["trt", "paddle_trt"]: if args.backend in ["trt", "paddle_trt"]:
det_option.set_trt_input_shape( det_option.trt_option.set_shape(
"x", [1, 3, 64, 64], [1, 3, 640, 640], [1, 3, 960, 960]) "x", [1, 3, 64, 64], [1, 3, 640, 640], [1, 3, 960, 960])
det_model = fd.vision.ocr.DBDetector( det_model = fd.vision.ocr.DBDetector(
det_model_file, det_params_file, runtime_option=det_option) det_model_file, det_params_file, runtime_option=det_option)
cls_option = option cls_option = option
if args.backend in ["trt", "paddle_trt"]: if args.backend in ["trt", "paddle_trt"]:
cls_option.set_trt_input_shape( cls_option.trt_option.set_shape(
"x", [1, 3, 48, 10], [10, 3, 48, 320], [64, 3, 48, 1024]) "x", [1, 3, 48, 10], [10, 3, 48, 320], [64, 3, 48, 1024])
cls_model = fd.vision.ocr.Classifier( cls_model = fd.vision.ocr.Classifier(
cls_model_file, cls_params_file, runtime_option=cls_option) cls_model_file, cls_params_file, runtime_option=cls_option)
rec_option = option rec_option = option
if args.backend in ["trt", "paddle_trt"]: if args.backend in ["trt", "paddle_trt"]:
rec_option.set_trt_input_shape( rec_option.trt_option.set_shape(
"x", [1, 3, 48, 10], [10, 3, 48, 320], [64, 3, 48, 2304]) "x", [1, 3, 48, 10], [10, 3, 48, 320], [64, 3, 48, 2304])
rec_model = fd.vision.ocr.Recognizer( rec_model = fd.vision.ocr.Recognizer(
rec_model_file, rec_model_file,

View File

@@ -83,18 +83,18 @@ def build_option(args):
elif backend in ["trt", "paddle_trt"]: elif backend in ["trt", "paddle_trt"]:
option.use_trt_backend() option.use_trt_backend()
if "Deeplabv3_ResNet101" in args.model or "FCN_HRNet_W18" in args.model or "Unet_cityscapes" in args.model or "PP_LiteSeg_B_STDC2_cityscapes" in args.model: if "Deeplabv3_ResNet101" in args.model or "FCN_HRNet_W18" in args.model or "Unet_cityscapes" in args.model or "PP_LiteSeg_B_STDC2_cityscapes" in args.model:
option.set_trt_input_shape("x", [1, 3, 1024, 2048], option.trt_option.set_shape("x", [1, 3, 1024, 2048],
[1, 3, 1024, [1, 3, 1024, 2048],
2048], [1, 3, 1024, 2048]) [1, 3, 1024, 2048])
elif "Portrait_PP_HumanSegV2_Lite_256x144" in args.model: elif "Portrait_PP_HumanSegV2_Lite_256x144" in args.model:
option.set_trt_input_shape("x", [1, 3, 144, 256], option.trt_option.set_shape(
[1, 3, 144, 256], [1, 3, 144, 256]) "x", [1, 3, 144, 256], [1, 3, 144, 256], [1, 3, 144, 256])
elif "PP_HumanSegV1_Server" in args.model: elif "PP_HumanSegV1_Server" in args.model:
option.set_trt_input_shape("x", [1, 3, 512, 512], option.trt_option.set_shape(
[1, 3, 512, 512], [1, 3, 512, 512]) "x", [1, 3, 512, 512], [1, 3, 512, 512], [1, 3, 512, 512])
else: else:
option.set_trt_input_shape("x", [1, 3, 192, 192], option.trt_option.set_shape(
[1, 3, 192, 192], [1, 3, 192, 192]) "x", [1, 3, 192, 192], [1, 3, 192, 192], [1, 3, 192, 192])
if backend == "paddle_trt": if backend == "paddle_trt":
option.paddle_infer_option.collect_trt_shape = True option.paddle_infer_option.collect_trt_shape = True
option.use_paddle_infer_backend() option.use_paddle_infer_backend()

View File

@@ -80,22 +80,22 @@ def build_option(args):
option.use_paddle_infer_backend() option.use_paddle_infer_backend()
option.paddle_infer_option.enable_trt = True option.paddle_infer_option.enable_trt = True
trt_file = os.path.join(args.model_dir, "infer.trt") trt_file = os.path.join(args.model_dir, "infer.trt")
option.set_trt_input_shape( option.trt_option.set_shape(
'input_ids', 'input_ids',
min_shape=[1, 1], min_shape=[1, 1],
opt_shape=[args.batch_size, args.max_length // 2], opt_shape=[args.batch_size, args.max_length // 2],
max_shape=[args.batch_size, args.max_length]) max_shape=[args.batch_size, args.max_length])
option.set_trt_input_shape( option.trt_option.set_shape(
'token_type_ids', 'token_type_ids',
min_shape=[1, 1], min_shape=[1, 1],
opt_shape=[args.batch_size, args.max_length // 2], opt_shape=[args.batch_size, args.max_length // 2],
max_shape=[args.batch_size, args.max_length]) max_shape=[args.batch_size, args.max_length])
option.set_trt_input_shape( option.trt_option.set_shape(
'pos_ids', 'pos_ids',
min_shape=[1, 1], min_shape=[1, 1],
opt_shape=[args.batch_size, args.max_length // 2], opt_shape=[args.batch_size, args.max_length // 2],
max_shape=[args.batch_size, args.max_length]) max_shape=[args.batch_size, args.max_length])
option.set_trt_input_shape( option.trt_option.set_shape(
'att_mask', 'att_mask',
min_shape=[1, 1], min_shape=[1, 1],
opt_shape=[args.batch_size, args.max_length // 2], opt_shape=[args.batch_size, args.max_length // 2],

2
fastdeploy/runtime/backends/paddle/option.h Normal file → Executable file
View File

@@ -60,7 +60,7 @@ struct PaddleBackendOption {
*/ */
IpuOption ipu_option; IpuOption ipu_option;
/// Collect shape for model while enabel_trt is true /// Collect shape for model while enable_trt is true
bool collect_trt_shape = false; bool collect_trt_shape = false;
/// Cache input shape for mkldnn while the input data will change dynamiclly /// Cache input shape for mkldnn while the input data will change dynamiclly
int mkldnn_cache_size = -1; int mkldnn_cache_size = -1;