mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-09 10:30:37 +08:00
Add argmax, argmin function (#104)
* Add argmax argmin function * Add unittest for argmax, argmin
This commit is contained in:
@@ -14,6 +14,7 @@
|
|||||||
|
|
||||||
#include "fastdeploy/function/reduce.h"
|
#include "fastdeploy/function/reduce.h"
|
||||||
|
|
||||||
|
#include <limits>
|
||||||
#include <set>
|
#include <set>
|
||||||
|
|
||||||
#include "fastdeploy/function/eigen.h"
|
#include "fastdeploy/function/eigen.h"
|
||||||
@@ -215,9 +216,139 @@ void Reduce(const FDTensor& x, FDTensor* out, const std::vector<int64_t>& dims,
|
|||||||
}
|
}
|
||||||
reduce_all = (reduce_all || full_dim);
|
reduce_all = (reduce_all || full_dim);
|
||||||
|
|
||||||
FD_VISIT_ALL_TYPES(x.dtype, "ReduceKernelImpl", ([&] {
|
FD_VISIT_INT_FLOAT_TYPES(x.dtype, "ReduceKernelImpl", ([&] {
|
||||||
ReduceKernelImpl<data_t, Functor>(x, out, dims, keep_dim,
|
ReduceKernelImpl<data_t, Functor>(
|
||||||
reduce_all);
|
x, out, dims, keep_dim, reduce_all);
|
||||||
|
}));
|
||||||
|
}
|
||||||
|
|
||||||
|
enum ArgMinMaxType { kArgMin, kArgMax };
|
||||||
|
|
||||||
|
template <typename T, typename Tout, int64_t Rank, ArgMinMaxType argMinMaxValue>
|
||||||
|
struct ArgMinMaxFunctor {};
|
||||||
|
|
||||||
|
#define DECLARE_ARG_MIN_MAX_FUNCTOR(eigen_op_type, enum_argminmax_value) \
|
||||||
|
template <typename T, typename Tout, int64_t Rank> \
|
||||||
|
struct ArgMinMaxFunctor<T, Tout, Rank, enum_argminmax_value> { \
|
||||||
|
void operator()(const FDTensor& in, FDTensor* out, \
|
||||||
|
const std::vector<int64_t>& x_dims, int64_t axis, \
|
||||||
|
bool keepdims, bool flatten) { \
|
||||||
|
const auto& dev = *EigenDeviceWrapper::GetInstance()->GetDevice(); \
|
||||||
|
auto in_eigen = EigenTensor<T, Rank>::From(in, x_dims); \
|
||||||
|
if (keepdims) { \
|
||||||
|
if (!flatten) { \
|
||||||
|
auto out_eigen = EigenTensor<Tout, Rank>::From(*out); \
|
||||||
|
out_eigen.device(dev) = \
|
||||||
|
in_eigen.eigen_op_type(axis).template cast<Tout>(); \
|
||||||
|
} else { \
|
||||||
|
auto out_eigen = EigenScalar<Tout>::From(*out); \
|
||||||
|
out_eigen.device(dev) = \
|
||||||
|
in_eigen.eigen_op_type(axis).template cast<Tout>(); \
|
||||||
|
} \
|
||||||
|
} else { \
|
||||||
|
auto out_eigen = EigenTensor<Tout, Rank - 1>::From(*out); \
|
||||||
|
out_eigen.device(dev) = \
|
||||||
|
in_eigen.eigen_op_type(axis).template cast<Tout>(); \
|
||||||
|
} \
|
||||||
|
} \
|
||||||
|
}
|
||||||
|
|
||||||
|
DECLARE_ARG_MIN_MAX_FUNCTOR(argmin, ArgMinMaxType::kArgMin);
|
||||||
|
DECLARE_ARG_MIN_MAX_FUNCTOR(argmax, ArgMinMaxType::kArgMax);
|
||||||
|
|
||||||
|
template <typename T, typename Tout, ArgMinMaxType EnumArgMinMaxValue>
|
||||||
|
void ArgMinMaxKernel(const FDTensor& x, FDTensor* out, int64_t axis,
|
||||||
|
bool keepdims, bool flatten) {
|
||||||
|
bool new_keepdims = keepdims | flatten;
|
||||||
|
// if flatten, will construct the new dims for the cacluate
|
||||||
|
std::vector<int64_t> x_dims;
|
||||||
|
int new_axis = axis;
|
||||||
|
if (flatten) {
|
||||||
|
x_dims = {x.Numel()};
|
||||||
|
// if flatten, the axis just as 0
|
||||||
|
new_axis = 0;
|
||||||
|
} else {
|
||||||
|
x_dims = x.shape;
|
||||||
|
if (axis < 0) new_axis = axis + x_dims.size();
|
||||||
|
}
|
||||||
|
#define CALL_ARG_MINMAX_FUNCTOR(rank) \
|
||||||
|
ArgMinMaxFunctor<T, Tout, rank, EnumArgMinMaxValue> functor##rank; \
|
||||||
|
functor##rank(x, out, x_dims, new_axis, new_keepdims, flatten)
|
||||||
|
|
||||||
|
switch (x_dims.size()) {
|
||||||
|
case 1:
|
||||||
|
CALL_ARG_MINMAX_FUNCTOR(1);
|
||||||
|
break;
|
||||||
|
case 2:
|
||||||
|
CALL_ARG_MINMAX_FUNCTOR(2);
|
||||||
|
break;
|
||||||
|
case 3:
|
||||||
|
CALL_ARG_MINMAX_FUNCTOR(3);
|
||||||
|
break;
|
||||||
|
case 4:
|
||||||
|
CALL_ARG_MINMAX_FUNCTOR(4);
|
||||||
|
break;
|
||||||
|
case 5:
|
||||||
|
CALL_ARG_MINMAX_FUNCTOR(5);
|
||||||
|
break;
|
||||||
|
case 6:
|
||||||
|
CALL_ARG_MINMAX_FUNCTOR(6);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
FDASSERT(x_dims.size() <= 6,
|
||||||
|
"%s operator doesn't supports tensors whose ranks are greater "
|
||||||
|
"than 6.",
|
||||||
|
(EnumArgMinMaxValue == kArgMin ? "argmin" : "argmax"));
|
||||||
|
break;
|
||||||
|
#undef CALL_ARG_MINMAX_FUNCTOR
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T, ArgMinMaxType EnumArgMinMaxValue>
|
||||||
|
void ArgMinMax(const FDTensor& x, FDTensor* out, int64_t axis,
|
||||||
|
FDDataType output_dtype, bool keepdims, bool flatten) {
|
||||||
|
const auto& x_dims = x.shape;
|
||||||
|
int64_t x_rank = x_dims.size();
|
||||||
|
FDASSERT(axis >= -x_rank,
|
||||||
|
"'axis'(%d) must be greater than or equal to -Rank(X)(%d).", axis,
|
||||||
|
-x_rank);
|
||||||
|
FDASSERT(axis < x_rank,
|
||||||
|
"'axis'(%d) must be less than or equal to Rank(X)(%d).", axis,
|
||||||
|
x_rank);
|
||||||
|
FDASSERT(output_dtype == FDDataType::INT32 || FDDataType::INT64,
|
||||||
|
"The attribute of dtype in argmin/argmax must be [%s] or [%s], but "
|
||||||
|
"received [%s].",
|
||||||
|
Str(FDDataType::INT32), Str(FDDataType::INT64), Str(output_dtype));
|
||||||
|
if (axis < 0) axis += x_rank;
|
||||||
|
if (output_dtype == FDDataType::INT32) {
|
||||||
|
int64_t all_element_num = 0;
|
||||||
|
if (flatten) {
|
||||||
|
all_element_num = x.Numel();
|
||||||
|
|
||||||
|
} else {
|
||||||
|
all_element_num = x_dims[axis];
|
||||||
|
}
|
||||||
|
FDASSERT(all_element_num <= std::numeric_limits<int>::max(),
|
||||||
|
"The element num of the argmin/argmax input at axis is "
|
||||||
|
"%d, is larger than int32 maximum value:%d, you must "
|
||||||
|
"set the dtype of argmin/argmax to 'int64'.",
|
||||||
|
all_element_num, std::numeric_limits<int>::max());
|
||||||
|
}
|
||||||
|
std::vector<int64_t> vec;
|
||||||
|
if (flatten) {
|
||||||
|
vec.emplace_back(static_cast<int64_t>(1));
|
||||||
|
} else {
|
||||||
|
for (int64_t i = 0; i < axis; i++) vec.emplace_back(x_dims[i]);
|
||||||
|
if (keepdims) {
|
||||||
|
vec.emplace_back(static_cast<int64_t>(1));
|
||||||
|
}
|
||||||
|
for (int64_t i = axis + 1; i < x_rank; i++) vec.emplace_back(x_dims[i]);
|
||||||
|
}
|
||||||
|
out->Allocate(vec, output_dtype);
|
||||||
|
|
||||||
|
FD_VISIT_INT_TYPES(output_dtype, "ArgMinMaxKernel", ([&] {
|
||||||
|
ArgMinMaxKernel<T, data_t, EnumArgMinMaxValue>(
|
||||||
|
x, out, axis, keepdims, flatten);
|
||||||
}));
|
}));
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -255,6 +386,23 @@ void Prod(const FDTensor& x, FDTensor* out, const std::vector<int64_t>& dims,
|
|||||||
bool keep_dim, bool reduce_all) {
|
bool keep_dim, bool reduce_all) {
|
||||||
Reduce<ProdFunctor>(x, out, dims, keep_dim, reduce_all);
|
Reduce<ProdFunctor>(x, out, dims, keep_dim, reduce_all);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void ArgMax(const FDTensor& x, FDTensor* out, int64_t axis,
|
||||||
|
FDDataType output_dtype, bool keep_dim, bool flatten) {
|
||||||
|
FD_VISIT_INT_FLOAT_TYPES(x.dtype, "ArgMaxKernel", ([&] {
|
||||||
|
ArgMinMax<data_t, kArgMax>(
|
||||||
|
x, out, axis, output_dtype, keep_dim, flatten);
|
||||||
|
}));
|
||||||
|
}
|
||||||
|
|
||||||
|
void ArgMin(const FDTensor& x, FDTensor* out, int64_t axis,
|
||||||
|
FDDataType output_dtype, bool keep_dim, bool flatten) {
|
||||||
|
FD_VISIT_INT_FLOAT_TYPES(x.dtype, "ArgMaxKernel", ([&] {
|
||||||
|
ArgMinMax<data_t, kArgMin>(
|
||||||
|
x, out, axis, output_dtype, keep_dim, flatten);
|
||||||
|
}));
|
||||||
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
} // namespace fastdeploy
|
} // namespace fastdeploy
|
@@ -96,5 +96,33 @@ FASTDEPLOY_DECL void Prod(const FDTensor& x, FDTensor* out,
|
|||||||
const std::vector<int64_t>& dims,
|
const std::vector<int64_t>& dims,
|
||||||
bool keep_dim = false, bool reduce_all = false);
|
bool keep_dim = false, bool reduce_all = false);
|
||||||
|
|
||||||
|
/** Excute the argmax operation for input FDTensor along given dims.
|
||||||
|
@param x The input tensor.
|
||||||
|
@param out The output tensor which stores the result.
|
||||||
|
@param axis The axis which will be reduced.
|
||||||
|
@param output_dtype The data type of output FDTensor, INT64 or INT32,
|
||||||
|
default to INT64.
|
||||||
|
@param keep_dim Whether to keep the reduced dims, default false.
|
||||||
|
@param flatten Whether to flatten FDTensor to get the argmin index, default
|
||||||
|
false.
|
||||||
|
*/
|
||||||
|
FASTDEPLOY_DECL void ArgMax(const FDTensor& x, FDTensor* out, int64_t axis,
|
||||||
|
FDDataType output_dtype = FDDataType::INT64,
|
||||||
|
bool keep_dim = false, bool flatten = false);
|
||||||
|
|
||||||
|
/** Excute the argmin operation for input FDTensor along given dims.
|
||||||
|
@param x The input tensor.
|
||||||
|
@param out The output tensor which stores the result.
|
||||||
|
@param axis The axis which will be reduced.
|
||||||
|
@param output_dtype The data type of output FDTensor, INT64 or INT32,
|
||||||
|
default to INT64.
|
||||||
|
@param keep_dim Whether to keep the reduced dims, default false.
|
||||||
|
@param flatten Whether to flatten FDTensor to get the argmin index, default
|
||||||
|
false.
|
||||||
|
*/
|
||||||
|
FASTDEPLOY_DECL void ArgMin(const FDTensor& x, FDTensor* out, int64_t axis,
|
||||||
|
FDDataType output_dtype = FDDataType::INT64,
|
||||||
|
bool keep_dim = false, bool flatten = false);
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
} // namespace fastdeploy
|
} // namespace fastdeploy
|
||||||
|
@@ -132,6 +132,26 @@ FASTDEPLOY_DECL bool ReadBinaryFromFile(const std::string& file,
|
|||||||
} \
|
} \
|
||||||
}()
|
}()
|
||||||
|
|
||||||
|
#define FD_VISIT_INT_FLOAT_TYPES(TYPE, NAME, ...) \
|
||||||
|
[&] { \
|
||||||
|
const auto& __dtype__ = TYPE; \
|
||||||
|
switch (__dtype__) { \
|
||||||
|
FD_PRIVATE_CASE_TYPE(NAME, ::fastdeploy::FDDataType::INT32, int32_t, \
|
||||||
|
__VA_ARGS__) \
|
||||||
|
FD_PRIVATE_CASE_TYPE(NAME, ::fastdeploy::FDDataType::INT64, int64_t, \
|
||||||
|
__VA_ARGS__) \
|
||||||
|
FD_PRIVATE_CASE_TYPE(NAME, ::fastdeploy::FDDataType::FP32, float, \
|
||||||
|
__VA_ARGS__) \
|
||||||
|
FD_PRIVATE_CASE_TYPE(NAME, ::fastdeploy::FDDataType::FP64, double, \
|
||||||
|
__VA_ARGS__) \
|
||||||
|
default: \
|
||||||
|
FDASSERT(false, \
|
||||||
|
"Invalid enum data type. Expect to accept data type INT32, " \
|
||||||
|
"INT64, FP32, FP64, but receive type %s.", \
|
||||||
|
Str(__dtype__)); \
|
||||||
|
} \
|
||||||
|
}()
|
||||||
|
|
||||||
#define FD_VISIT_FLOAT_TYPES(TYPE, NAME, ...) \
|
#define FD_VISIT_FLOAT_TYPES(TYPE, NAME, ...) \
|
||||||
[&] { \
|
[&] { \
|
||||||
const auto& __dtype__ = TYPE; \
|
const auto& __dtype__ = TYPE; \
|
||||||
|
@@ -305,5 +305,72 @@ TEST(fastdeploy, reduce_any) {
|
|||||||
check_data(reinterpret_cast<const bool*>(output.Data()),
|
check_data(reinterpret_cast<const bool*>(output.Data()),
|
||||||
expected_result_noaxis.data(), expected_result_noaxis.size());
|
expected_result_noaxis.data(), expected_result_noaxis.size());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
TEST(fastdeploy, reduce_argmax) {
|
||||||
|
FDTensor input, output;
|
||||||
|
CheckShape check_shape;
|
||||||
|
CheckData check_data;
|
||||||
|
|
||||||
|
std::vector<int> inputs = {2, 4, 3, 7, 1, 5};
|
||||||
|
std::vector<int64_t> expected_result_axis0 = {1, 0, 1};
|
||||||
|
std::vector<int64_t> expected_result_axis1 = {1, 0};
|
||||||
|
std::vector<int64_t> expected_result_noaxis = {3};
|
||||||
|
input.SetExternalData({2, 3}, FDDataType::INT32, inputs.data());
|
||||||
|
|
||||||
|
// axis = 0, output_dtype = FDDataType::INT64, keep_dim = false, flatten =
|
||||||
|
// false
|
||||||
|
ArgMax(input, &output, 0);
|
||||||
|
check_shape(output.shape, {3});
|
||||||
|
check_data(reinterpret_cast<const int64_t*>(output.Data()),
|
||||||
|
expected_result_axis0.data(), expected_result_axis0.size());
|
||||||
|
|
||||||
|
// axis = -1, output_dtype = FDDataType::INT64, keep_dim = false, flatten =
|
||||||
|
// false
|
||||||
|
ArgMax(input, &output, -1);
|
||||||
|
check_shape(output.shape, {2});
|
||||||
|
check_data(reinterpret_cast<const int64_t*>(output.Data()),
|
||||||
|
expected_result_axis1.data(), expected_result_axis1.size());
|
||||||
|
|
||||||
|
// axis = -1, output_dtype = FDDataType::INT64, keep_dim = false, flatten =
|
||||||
|
// true
|
||||||
|
ArgMax(input, &output, -1, FDDataType::INT64, false, true);
|
||||||
|
check_shape(output.shape, {1});
|
||||||
|
check_data(reinterpret_cast<const int64_t*>(output.Data()),
|
||||||
|
expected_result_noaxis.data(), expected_result_noaxis.size());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(fastdeploy, reduce_argmin) {
|
||||||
|
FDTensor input, output;
|
||||||
|
CheckShape check_shape;
|
||||||
|
CheckData check_data;
|
||||||
|
|
||||||
|
std::vector<int> inputs = {2, 4, 3, 7, 1, 5};
|
||||||
|
std::vector<int64_t> expected_result_axis0 = {0, 1, 0};
|
||||||
|
std::vector<int64_t> expected_result_axis1 = {0, 1};
|
||||||
|
std::vector<int64_t> expected_result_noaxis = {4};
|
||||||
|
input.SetExternalData({2, 3}, FDDataType::INT32, inputs.data());
|
||||||
|
|
||||||
|
// axis = 0, output_dtype = FDDataType::INT64, keep_dim = false, flatten =
|
||||||
|
// false
|
||||||
|
ArgMin(input, &output, 0);
|
||||||
|
check_shape(output.shape, {3});
|
||||||
|
check_data(reinterpret_cast<const int64_t*>(output.Data()),
|
||||||
|
expected_result_axis0.data(), expected_result_axis0.size());
|
||||||
|
|
||||||
|
// axis = -1, output_dtype = FDDataType::INT64, keep_dim = false, flatten =
|
||||||
|
// false
|
||||||
|
ArgMin(input, &output, -1);
|
||||||
|
check_shape(output.shape, {2});
|
||||||
|
check_data(reinterpret_cast<const int64_t*>(output.Data()),
|
||||||
|
expected_result_axis1.data(), expected_result_axis1.size());
|
||||||
|
|
||||||
|
// axis = -1, output_dtype = FDDataType::INT64, keep_dim = false, flatten =
|
||||||
|
// true
|
||||||
|
ArgMin(input, &output, -1, FDDataType::INT64, false, true);
|
||||||
|
check_shape(output.shape, {1});
|
||||||
|
check_data(reinterpret_cast<const int64_t*>(output.Data()),
|
||||||
|
expected_result_noaxis.data(), expected_result_noaxis.size());
|
||||||
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
} // namespace fastdeploy
|
} // namespace fastdeploy
|
||||||
|
Reference in New Issue
Block a user