[Model] Add tinypose single && pipeline model (#177)

* Add tinypose model

* Add PPTinypose python API

* Fix picodet preprocess bug && Add Tinypose examples

* Update tinypose example code

* Update ppseg preprocess if condition

* Update ppseg backend support type

* Update permute.h

* Update README.md

* Update code with comments

* Move files dir

* Delete premute.cc

* Add single model pptinypose

* Delete pptinypose old code in ppdet

* Code format

* Add ppdet + pptinypose pipeline model

* Fix bug for posedetpipeline

* Change Frontend to ModelFormat

* Change Frontend to ModelFormat in __init__.py

* Add python posedetpipeline/

* Update pptinypose example dir name

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Create keypointdetection_result.md

* Create README.md

* Create README.md

* Create README.md

* Update README.md

* Update README.md

* Create README.md

* Fix det_keypoint_unite_infer.py bug

* Create README.md

* Update PP-Tinypose by comment

* Update by comment

* Add pipeline directory

* Add pptinypose dir

* Update pptinypose to align accuracy

* Addd warpAffine processor

* Update GetCpuMat to  GetOpenCVMat

* Add comment for pptinypose && pipline

* Update docs/main_page.md

* Add README.md for pptinypose

* Add README for det_keypoint_unite

* Remove ENABLE_PIPELINE option

* Remove ENABLE_PIPELINE option

* Change pptinypose default backend

* PP-TinyPose Pipeline support multi PP-Detection models

* Update pp-tinypose comment

* Update by comments

* Add single test example

Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
huangjianhui
2022-10-21 09:28:23 +08:00
committed by GitHub
parent 49ab773d22
commit b565c15bf7
62 changed files with 2583 additions and 20 deletions

View File

@@ -0,0 +1,69 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import logging
from .... import FastDeployModel, ModelFormat
from .... import c_lib_wrap as C
class PPTinyPose(FastDeployModel):
def __init__(self,
model_file,
params_file,
config_file,
runtime_option=None,
model_format=ModelFormat.PADDLE):
"""load a PPTinyPose model exported by PaddleDetection.
:param model_file: (str)Path of model file, e.g pptinypose/model.pdmodel
:param params_file: (str)Path of parameters file, e.g pptinypose/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
:param config_file: (str)Path of configuration file for deployment, e.g pptinypose/infer_cfg.yml
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
"""
super(PPTinyPose, self).__init__(runtime_option)
assert model_format == ModelFormat.PADDLE, "PPTinyPose model only support model format of ModelFormat.Paddle now."
self._model = C.vision.keypointdetection.PPTinyPose(
model_file, params_file, config_file, self._runtime_option,
model_format)
assert self.initialized, "PPTinyPose model initialize failed."
def predict(self, input_image):
"""Detect keypoints in an input image
:param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:return: KeyPointDetectionResult
"""
assert input_image is not None, "The input image data is None."
return self._model.predict(input_image)
@property
def use_dark(self):
"""Atrribute of PPTinyPose model. Stating whether using Distribution-Aware Coordinate Representation for Human Pose Estimation(DARK for short) in postprocess, default is True
:return: value of use_dark(bool)
"""
return self._model.use_dark
@use_dark.setter
def use_dark(self, value):
"""Set attribute use_dark of PPTinyPose model.
:param value: (bool)The value to set use_dark
"""
assert isinstance(
value, bool), "The value to set `use_dark` must be type of bool."
self._model.use_dark = value